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FOREWORD

This volume, Volume II, presents the Northrop Services, Inc., SEPS System

Analysis and Evolution of Design and Operational Concepts.

The complete final study report is composed of four volumes:

Volume I Executive Summary

Volume II System Analysis and Evolution of Design and
Operational Concepts

Volume III Design Reference Mission Description and
Program Support Requirements

Volume IV Traffic Model and Flight Schedule Analysis
Techniques and Computer Programs.

The study, Mission Roles for the Solar Electric Propulsion Stage, with

the Space Transportation System, was conducted under Contract NAS8-30742.

Mr. Robert E. Austin of the Marshall Space Flight Center was the Contracting

Officer's Representative for NASA. Mr. David M. Hammock was Northrop Services,

Inc.'s, Study Program Manager.

The study was accomplished under Contract NAS8-30742 during the period

from 20 May 1974 to February 1975, and was funded at $130,000.
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Section I

SUMMARY

1.1 GENERAL

The Solar Electric Propulsion Stage (SEPS) is a space propulsion stage that

achieves high specific impulse (Isp) by converting solar energy to electrical

energy which is used in an electrostatic particle accelerator to produce a 
high

velocity ion beam. A parallel beam of electrons is produced so that diffusion

of electrons into the ion beam produces a neutral plasma jet obviating any ion

return flow problems. A specific impulse of more than 30,000 seconds is feasi-

ble with this general type of space propulsion system. The desirable Isp range

for missions contemplated for the period 1979 to 1991 is in the range of 2,500

seconds to 5,000 seconds. Technology programs from 1967 to the present have

demonstrated long life, continuous operation (in this Isp range) of flight

suitable thrusters in laboratory tests and in research vehicle flight tests.

Previous SEPS mission and system definition studies have concentrated

primarily on planetary exploration. As the Space Transportation System (STS)

configuration and its mission employment was defined in greater detail, it

became obvious that a SEPS type vehicle with its high Isp, relatively unlim-

ited stay time in space, small propellant weight requirement, and operational

flexibility would greatly augment the Shuttle, Interim Upper Stage (IUS), and

Tug capabilities in the areas of transport to high energy orbits, orbital 
taxi

functions, and servicing functions.

In 1974, the National Aeronautics and Space Administration (NASA), en-

tered that phase of SEPS concept definition where significant funding would be

committed to design definition and Supporting Research and Technology (SRT)

projects oriented to specific SEPS configuration concepts. NASA considered

it an appropriate time to:

* Critically review design defining trade studies and "optimization"

results of past studies

* Ensure that system requirements and "baseline" system configuration

characteristics derived from past studies were valid
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0 Ensure credibility of the cost effectiveness of SEPS as an added
element of the STS.

Therefore, NASA, through its George C. Marshall Space Flight Center, im-

plemented the "Mission Roles for SEPS with the Space Transportation System"

study to quantify SEPS potential capabilities and transportation cost savings.

1.2 STUDY OBJECTIVES

The primary objectives of the SEPS study were to:

* Define mission roles that are major contributors to transportation
cost reduction when SEPS is operated as an element of the Space
Transportation System

* Generate concepts for and perform operations analyses on:

* Payload exchanges with Shuttle, IUS, and Tug

* Multiple payload deployment and retrieval

* Payload maintenance and servicing in space

* Develop conceptual designs of payload handling and servicing equipment

* Identify SEPS interfaces with Shuttle, IUS, Tug, ground flight con-
trol centers, and launch support systems

* Define requirements not identified in prior studies and assess resul-
tant design impacts on subsystems proposed in earlier studies.

Contributing secondary objectives of the SEPS study were to:

* Quantify transport cost effectiveness of SEPS with STS relative to a
NASA supplied mission model

* Define a system operational profile with individual payloads assigned
to specific flights to occur on specific dates

* Identify operational requirements and define SEPS program support

* Establish SEPS transport performance and show potential for improvement

* Identify benefits to IUS, Tug, and payload operations resulting from
SEPS use

* Estimate operational costs of SEPS

* Identify problem areas for future investigation.

1.3 RELATION TO OTHER NASA EFFORTS
The reference mission model for quantifying the transportation cost

savings and the definition of the "baseline" STS without SEPS were generated
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by the Marshall Space Flight Center. The "baseline" SEPS configuration ground

rule for this study was the culmination of 3 years of NASA sponsored studies

by Rockwell International Space Division, as generally defined in the final

reports of their two latest studies*.

The performance of the power conversion units and thruster elements were

based upon values from the Lewis Research Center's thruster subsystem control

documents provided by MSFC in June 1974. Mr. Charles H. Guttman, MSFC, was

the Contracting Officer's Representative for the Rockwell International Space

Division studies.

Concurrent NASA in-house technology programs and other NASA sponsored

studies contributing to the data base for this study were:

* Lewis Research Center's ongoing technology programs in solar electric

propulsion power processors and thrusters

* Jet Propulsion Laboratory's thruster subsystem integration programs

* MSFC's ongoing programs in solar arrays and navigation and guidance

analysis

* MSFC's Baseline Space Tug System Definition

* Hughes Research Labs' and TRW's engineering model development and

improvement programs for thrusters and power processors under Lewis

Research Center's sponsorship

0 McDonnell Douglas' "Payload Utilization of Tug" and Follow-On

(NAS9-29743 MSFC) and "IUS/Tug Payload Requirements Compatibility

Study" (NAS8-31013 MSFC)

* International Business Machine's IUS and Tug Orbital Operations and

Mission Support Study

* NASA supplied STS (other than SEPS) operational cost data.

1.4 STUDY APPROACH

The study effort was divided into five principal tasks. The systematic

output of the tasks at a given level of detail allowed selection of competing

*(1) Feasibility Study of a Solar Electric Propulsion Stage for Geosynchronous

Equatorial Missions, DRL No. MA04 DPD304, Contract NAS8-27360, dated
February 1973.

(2) Extended Definition Feasibility Study for a SEPS Concept Definition,

DR No. MA04 DPD369, dated December 21, 1973.
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concepts with a minimum of defining details of concepts later to be rejected.

Successive iterations of the study were used to improve the concept of the

selected system approach and to improve the accuracy .of quantitative values

used to support certain decisions.

The five study tasks.were:

1. Mission Roles Identification and Analysis of STS Baseline Configura-
tion Selection

2. Mission Operations and Systems Requirements Analysis

3. System and Subsystem Design Impacts Analysis

4. Interface Analysis

5. Cost Analysis.

The first step in establishing the transportation cost effectiveness of

SEPS was to establish the maximum credible performance (minimum number of

Shuttle flights) of STS without EO SEPS as the reference base for cost compar-

isons. To do this NSI evaluated transportation capabilities of the NASA de-

fined baseline STS in operational modes that would maximize its transportation

efficiency. NSI assumed modified forms of operational modes and equipment

concepts evolved for STS with EO SEPS that if applied to baseline STS would

justify removal of arbitrary restrictions on the number of payloads that could

be carried on any flight.

The sensitivity of cost savings to various operational constraints such

as multiple payload packaging restraints and arbitrary restrictions on num-

bers of payloads on a given flight that had been used in other studies were

determined. Transportation cost savings resulting from more compact Tug

designs, higher Isp in SEPS, and higher SEPS power were investigated.

A concerted attempt to compare maximum capability STS operation to maximum

capability STS with SEPS was made so that the transportation cost savings

attributed to SEPS would be extremely conservative and as realistic as the

mission model.
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In Task II, design reference mission descriptions were generated to estab-

lish design requirements for flight articles and to define ground support re-

quirements for the flight operations. Operational modes, organizations, and

facility concepts that would minimize the cost for the total SEPS Program

Support were generated and defined.

In Tasks III and IV, new approaches and new applications of older ones

were conceived for SEPS payload transport and for handling and servicing

functions. New approaches were conceived for General Purpose Mission Equip-

ment (GPME) for Tug and IUS that simplified IUS and Tug operations. Con-

ceptual design of the equipment required by the approaches were developed.

Interfaces between SEPS and other STS elements and payloads were identi-

fied and defined to the extent warranted by the present level of design

definition of the elements (or to the extent necessary to identify the desir-

able characteristics of the interface).

Assessments were conducted of technology areas that would have significant

influence on the recommended SEPS and GPME configuration or on their opera-

tional modes with the STS.

Task V study requirements were to update NASA supplied "baseline" SEPS

program costs by generating cost deltas resulting from the study's recommended

changes to SEPS baseline subsystem. Recommendations from this study and NASA

in-house activities indicated that a better approach to costing was to generate

new independent cost estimates. Estimated program costs were significantly

reduced by new configurations and new operational modes evolved during this

study.

1.5 STUDY LIMITATIONS

Certain areas of the study were limited by the following guidelines or

constraints:

. Cost effectiveness of SEPS was limited solely to STS transport cost
savings for accomplishment of "The October 1973 Space Shuttle Traffic
Model," NASA TMX-64751, Revision 2, dated January 1974. No cost ad-
vantage of other SEPS mission capabilities such as onorbit servicing,
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maneuvering payloads in orbit, or the great increase in allowable
payload weights for high energy earth orbital missions and planetary
missions was considered. The mission model covers the years from
1981 to 1991.

* The "baseline" STS was defined as the Shuttle, an expendable tran-
stage (IUS) through 1983, and the MSFC (June 1974) baseline Tug from
1984 to 1991.

* Planetary mission roles were not investigated except to ensure that
configurations and characteristics defined for the SEPS earth orbital
functions would provide equal or enhanced planetary mission capabili-
ties relative to the NASA supplied baseline SEPS configuration.

1.6 SIGNIFICANT SYSTEM CHARACTERISTICS AND STUDY CONCLUSIONS
Solar electric propulsion stages have radically different physical and

performance characteristics than the familiar chemical propulsion stages.

These characteristics influence every facet of the associated developmental

and operational phases. Although the difference in physical characteristics

is rather obvious, the tremendous potential from exploiting these differences

(and some limitations) are often overlooked even by experienced space system

planners and concept evaluators.

Depending upon the evaluator's recognition of the influence of certain

physical and performance differences of SEPS and conventional stages, the

conclusions and other results of this study may be accepted as so obvious as
to hardly warrant their statement, or they may be summarily rejected.

Because of these factors, the following rather unorthodox order of

presentation will be used:

* Primary characteristics and resulting first order influences of
system differences

* Study conclusions

* System concepts and data generated

* Technology assessments.

1.6.1 Primary Characteristics and Influences

Isp AND THRUST

The feasible range of specific impulse (Isp) for mercury ion systems is
2,000 to 30,000 seconds. Demonstrated designs have SEPS operating in the
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2,000- to 5,000-second range. For negligible weight and cost penalty, select-

able high thrust and low Isp, or high Isp and low thrust operating modes can

be designed into the system. Selection of the combination best suited to each

mission phase can be made in flight.

The potential of SEPS high Isp can be inferred from the following compar-

isons. A characteristic high performance (450-second Isp) Space Tug configura-

tion with 22,676 kg of 02/H 2 propellant and a 2,585 kg inert weight can provide

a 1,814 kg payload with a 8,016 m/sec change in velocity. A 3,000 second Isp

SEPS with 959 kg of mercury propellant and a burnout weight of 1,297 kg can

provide the same AV to a similar 1,814 kg payload. The SEPS loaded weight

(2,206 kg) is only 9 percent of the chemical stage weight (25,260 kg).

The AV just described is approximately the AV for a round trip from Shuttle

orbit to geosynchronous and return. If that were the mission and SEPS executed

it, SEPS low thrust would result in "gravity losses" such that its idealized AV

requirement would be 1.5 times an impulse stage's AV or 12,024 m/sec. For the

SEPS to accomplish that AV, its initial weight would be 2,793 kg (11 percent of

the chemical stage mass) and it would have to tank 1,546 kg of mercury. If

SEPS were designed to operate through the Van Allen belts with radiation resist-

ant, self-annealing solar cells, the solar cell "blankets" might increase 30 to

40 percent in cost and increase in weight by approximately 70 kg.

SEPS specific impulse is proportional to the square root of screen voltage;

therefore, Isp could be increased by operating at higher thruster screen volt-

ages (Vs). Assume an operation at 2 times the screen voltage. SEPS Isp is now

-x 3000 sec. = 4243 sec. Initial stage weight is only 2,273 kg and only

1,025 kg of mercury would have to be tanked. Initial stage weight for the

4,243 Isp stage is just 81 percent of a 3000 Isp stage.

SEPS receives its energy from the sun, so increasing the energy per unit

mass of propellant (increasing Isp) in order to reduce the total required pro-

pellant for a mission will reduce the initial total weight, but will increase

the mission time. To shorten trip times, SEPS energy collection and conversion

rate to electrical power must be increased. Within ranges of interest for SEPS,

power is limited only by the cost of solar arrays required to produce the
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higher power levels. Masses increase but they are within launch capability of

a single STS flight.

As a result of the physical phenomena by which SEPS functions, it has the

unique capability to trade increased mission accomplishment time against re-

duced gross weight as was just illustrated. Its mercury propellant is so dense

(specific gravity over 13) and tank pressures so low (21 n/cm2 ) that excess

capacity tanks can be designed into the system at minor weight penalty. If

this is done, planned increases in payload masses or more demanding total

impulse missions, not originally planned for the vehicle, can be accomplished

simply by allowing longer times for accomplishing the missions and tanking

more propellant at initiation of the mission.

In the power ranges desirable for the 1984 to 1991 time frame (25 kw up

to 100 kw), the power level chosen for development has relatively small influ-

ence on the development cost of the system. Solar arrays may represent about

25 percent of the production cost of the complete stage. If oversized arrays

for planetary missions are produced when the power and extra payload mass

ability is not required, a cost penalty of about 10 percent of the base pro-

duction cost of those of planetary vehicles could be incurred.

BASIC PROPULSION POWER CONVERSION CONSIDERATION

The SEPS thruster is a simple electrostatic charged particle accelerator

as shown schematically on Figure 1-1. The operating Isp (proportional to JVs)

is set by the voltage level of the screens (Vs). The thrust level and current

flow of the thruster are dominantly responsive to the density of the plasma

(ion population per unit volume). Therefore, primary thrust control is by

control of the temperature of the main and cathode mercury propellant vaporizers

which determine the plasma pressure inside the thrusters. Of the total electri-

cal power to the thruster, (depending on screen voltage) 80 to 90 percent goes

into ion beam energy. This "screen power" or "beam power" only needs to be

direct current, relatively free of ripple currents and at approximately the

voltage corresponding to the Isp desired for the particular mission or mission

phase. The solar arrays are nearly ideal sources for direct supply of this

power. Their use avoids loss of power due to processor inefficiencies and

reduces weight and cost associated with screen power processing.
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Figure 1-1. SEPS THRUSTER SCHEMATIC
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PHYSICAL SIZE AND TEST CHARACTERISTICS INFLUENCING SUPPORT REQUIREMENTS

The SEPS dimensions when packaged for transportation or in the launch con-

figuration are 3 meters by 3 meters by 5-meters. A variety of surface or air
transport options exist for transport from manufacturing site to operations

support center and to launch site without requirement of special vehicles or

handling gear.

The SEPS is essentially an electrical device with relatively simple mechan-

ical subsystems. No expensive test devices, other than vacuum chambers now in

existence and used only in initial thruster subsystem acceptance tests and for
Design, Development, Test .and Evaluation (DDT&E), are required. The operational
and sustaining engineering force and facilities required for SEPS total program
support is therefore small.

1.6.2 The Space Transportation System with SEPS As A Transport Element

The system elements are shown on Figure 1-2. No physical changes or
additions to the Shuttle are required for SEPS operation in the system. A
standard family of "kick stages" should not be defined until more information
exists on the character of payloads and specific mission requirements. For
this study, a representative kick stage that could be fitted with different

numbers of solid rocket motors was assumed. For earth orbital missions, SEPS
eliminates the need for any kick stages or payload velocity addition ability
in the payloads themselves for achieving initial mission position, or for re-
trieval of payloads after mission accomplishment. For other missions, plane-
tary and earth escape, SEPS reduces auxiliary propulsion performance require-
ments without placing any demands or constraints on the kick stages. SEPS
offers the potential for recovery of Tug instead of expending it for many
missions. The. scope of this study did not allow investigation of that poten-
tial.

The study ground rules supplied by NASA defined an Interim Upper Stage
(IUS), which is a "stretched tank" transtage for use through 1983 and a base-
line Space Tug defined by MSFC for use from 1984 onward. SEPS requires no
characteristics of these vehicles that are not required for their missions
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when operated independently of SEPS. Because SEPS can always accomplish the

remaining portions of any combined SEPS plus IUS or Tug missions by extensions

of the required SEPS trip time, SEPS removes the development schedule and cost

risks that are associated with meeting burnout weight and propulsion perfor-

mance goals from the IUS and Tug programs. The use of SEPS reduces the number

of IUS and Tug flights required to accomplish the reference mission model.

1.v

CORE SEPS

EO AVIONICS REPLENISHMENT KIT
KIT

MAST/MANIPULATOR
SYSTEM KIT

SEPS RELATED ELEMENTS

STS AND GENERAL PURPOSE MISSION EQUIPMENT

ORBITER PAYLOAD MOUNTING SORTIE TAILORED
INTERFACE 

STANDARD
LONGERON STANDARD KICK STAGE DIAPHRAGMS

+ FAMILY OF SRMS

TRANSPORT SHELL

INTERIM
UPPER STAGE BASE LINE

SHUTTLE

Figure 1-2. STS WITH SEPS SYSTEM ELEMENTS

The system characteristics and programmatic cost factors identified in

this study indicate that a single core SEPS vehicle should be developed. NASA

has directed that this study concentrate on the operational characteristics

of a 25 kw power level SEPS. NSI, for reasons to be described later under

principal trade studies, believes that greater power levels are desirable.

Except for trade study discussions, all SEPS configuration, performance, and

operational characteristics discussed in this volume are those of a 25 kw

power level configuration.
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The core vehicle is produced in a single continuous production run to

minimize production cost of the 11 flight articles and one test article which

is refurbished to provide the second spare vehicle for the program. There are

eight SEPS committed to four (dual launch) planetary missions and three to

earth orbital (with one spare considered as an earth orbital vehicle). The

planetary missions are 1981 Europe Rendezvous, 1981 Jupiter Orbiter, Metis

Rendezvous and Mercury Orbiter. The communication, navigation and guidance,

and data management subsystems of the core vehicle are standard although they

are operated in different modes for the planetary mission and the earth orbit-

al missions. Major blocks of the software are naturally different.

For the earth orbital kit the avionics system contains four TV cameras,

two located on the'manipulator arms and two located on the scanning platforms

with other core vehicle navigation and guidance sensors. The earth orbital

function utilizes a scanning LADAR for rendezvous with payloads and other

elements of the STS. The scan platform mounted TV cameras can serve as back-

up for the LADAR. The core SEPS is capable of autonomous navigation and

guidance on planetary missions. With the addition of a horizon sensor or an

Interferometric Landmark Tracker (ILT) and radar altimeters, the SEPS has

autonomous navigation and guidance capability for earth orbit missions.

The extendable payload mast and manipulator system kit, to be described

later, provides near universal adaptability for in-space handling, servicing,

retrieval, and maintenance of payloads without forcing severe configuration or

geometric arrangement constraints on payload developers. The software required

to prevent human operators from commanding manipulator functions that could

cause equipment damage, and the software which allows simplified manipulator

hand steering to desired locations, requires less than 32,000 word of computer

memory (a SUMC memory block 3.7 cm x 25 cm x 25 cm). The combined mechanisms

required for the full range of payload and multiple payload transport func-

tions is simpler with manipulators than with any other system providing even

the basic capabilities.

The economy of the STS operation to accomplish the total NASA supplied

reference mission model in the years 1981 to 1991 demands multiple payload
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deployments on each Tug-Shuttle flight. For example, 83 percent of the pay-

loads can be arranged in flight manifests for a Shuttle comprising five or

more individual payloads. Figure 1-3 shows the frequency of Shuttle flight

manifests versus the number of individual payloads on the manifest. On some

flights, some of these individual payloads go to intermediate orbits and are

not transported by SEPS.

11 --

10

9 83% 4 OR MORE 9 89% 2 OR MORE

8 47% 5 OR MORE 8 75% 3 OR MORE

6 6

5 5

4 04

33

1 1 ,

0 0 10 I I 03

1 2 3 4 5 6 9 0 1 2 3 4 5 6

HISTOGRAM - NUMBERS OF PAYLOADS IN SHUTTLE UP MANIFESTS HISTOGRAM - NUMBERS OF PAYLOADS IN
SHUTTLE DOWN MANIFESTS

0 1 2 3 4 b 6 0 1 2 3 4 5 6

HISTOGRAM - SHUTTLE. DOWN PAYLOADS IN HISTOGRAM - DOWN PAYLOADS IN

COMBINATION WITH FOUR UP COMBINATION WITH FIVE UP

2-

0 1 2 3 4
HISTOGRAM - DOWN PAYLOADS IN
COMBINATION WITH SIX UP

Figure 1-3. FREQUENCY OF OCCURRENCE VERSUS NUMBER OF INDIVIDUAL PAYLOADS
IN CARGO MANIFESTS

In order to isolate Shuttle and Tug operations from the potential delays

of launch preparation associated with the integration of four or more payloads

into a single launch package and to provide payload users with simple, easy

access to their payloads, NSI generated a standard transport shell and payload

mounting diaphragm concept. This concept allows all payloads for a specific

flight to be integrated into a single package prior to mating the package to
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the Tug. The Tug plus "package" is then mated to the Orbiter as a single

payload.

Since each payload is mounted directly to a diaphragm, interactions be-

tween the individual payloads are minimized, and access to individual payloads

is simplified.

The payload transport shell is a lightweight half cylinder, honeycomb

core, monocoque structure. The standard diaphragms for payload mounting have

multiple payload mount structural attach points and are reusable General Purpose

Mission Equipment (GPME). Specially tailored payload mount diaphragms are

fabricated for those infrequent conditions where unusual payload attach require-

ments exist.

Satellite systems are presently being designed for 10-year operational

lifetimes. Several presently operating satellites have been in orbit for 6 to

9 years. SEPS operational life for each mission cycle was assumed for cost

analysis purposes to be 5 years. The expected operational life is much longer.

If propellant for the total lifetime in space is carried on early SEPS

sorties, trip times are unnecessarily long. To shorten average trip times,

methods for replenishing expendables must be implemented. SEPS has only two

expendables, the main propellant (mercury), and the attitude control system

propellant (N2H4 ). Both propellant supply subsystems are N2 accumulator

pressurized so that replenishment may be accomplished by simply forcing pro-

pellant from the replenishing tank into the depleted storage tanks which re-

compresses the expulsion gases during the replenishment. The SEPS manipulators

provide the inherent ability for self-servicing on any payload delivery mission

where Tug brings up an expendables replenishment kit with the payload group to

be transferred to SEPS. The probable limiting factor on SEPS operational life

in space is thruster lifetime. Technology programs directed toward extending

thruster life are highly desirable.

1.6.3 SEPS Configuration and Functional Characteristics

The foregoing discussions described the elements composing an STS plus SEPS
transport system. At the beginning of any discussion on SEPS configuration,
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several basic factors should be emphasized. The active elements of SEPS are

very compact. Once operational in space, the greatest acceleration that SEPS

is ever exposed to results from its attitude control system thrusters. Their

absolute thrust level requirement for control and docking is extremely low.

The level is therefore chosen based on accelerations that make for operator

convenience and reduce the time that mission control centers must be involved

in SEPS operations. Peak accelerations are in the range of 0.002g to 0.01g.

Any desired deployed geometry in space can therefore be implemented at a very

small penalty in structural mass increase. The active elements of SEPS have

no preferential orientation except to meet the condition that solar arrays must

be orientable normal to the sunline, and radiation cooling panels must have

at least one face orientable to dark space. Many equally attractive arrangements

of SEPS power production and thrust producing components are possible.

The decision controlling factors regarding SEPS overall characteristics,

therefore, are primarily related to the functional interfaces with the payloads,

and STS General Purpose Mission Equipment (GPME). In summary, the decision

controlling factors are:

* STS transportation efficiency depends on multiple payload deliveries
and multiple retrievals

* Cost effectiveness requires that GPME be usable on successive flights
without modification and with few special payload adapter items

* The GPME must simplify Shuttle-Tug operations

* Multiple payload transport must place minimum constraints on payload
designers

* Design should provide for easy replenishment of expendables

* GPME mass increase to simplify other STS operations does not reduce
SEPS plus Tug net payload capability; modest trip time increases
allow SEPS to make up for Tug's lower payload transfer orbit ability

* SEPS capabilities are almost directly proportional to design power
level in the range of 25 to 100 kw.

With the characteristics controlling factors identified, selection of cri-

teria for choosing a SEPS configuration must be established. These criteria

derive from national and NASA policy decisions rather than technical facts.

No configuration choice is defensible without final reference to some of these

criteria. The selection choices are to configure for:
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" The minimum to meet absolute mission needs for some reference
mission model existing on a certain date, or

* Cost effectiveness against a reference mission model considering
only transport vehicle operational cost savings, or

* Total cost effectiveness plus those low cost characteristics that
greatly enhance functional capability and mission versatility,
since mission models and payload concepts are at present inadequately
defined and are constantly changing as the value of new missions and
concepts are recognized.

Based on the analyses of this study, the foregoing decision factors, and

NSI's belief that the last criteria above is the logical choice, the conclusions

regarding SEPS configuration and Space Transportation System GPME associated

with SEPS sorties are:

* A standard payload transport shell to facilitate Tug handling of
independently mounted multiple payloads should be developed.

* A manipulator/extendable payload support mast system for SEPS will
result in low operational cost and impose the minimum design con-
straints on payload developers.*

* Screen power direct from the solar arrays with inherent Isp option
to match specific mission requirements will reduce the size of
required solar arrays for a given thrust, improve reliability and
reduce radiator panel size.

* SEPS transportation capability within a specified trip time is almost
directly proportional to power. SEPS development costs are only
slightly increased by power level and operational costs are reduced.
SEPS should be developed with power level greater than 25 kw.

The basic configuration recommended for SEPS and GPME is shown on Figure

1-4. To illustrate the recommended system's capability, one of the sorties

from the baseline 25 kw SEPS System Operational Profile will be briefly de-

scribed. The sortie is a 1983 flight from one of the master schedules generated

to accomplish the reference mission model where the Interim Upper Stage (IUS)

brings 7 payloads up to payload transfer orbit to meet SEPS. The seven net

payload masses SEPS will deploy at its final mission destination total about

3860 Kg.

*A detachable mission kit of these items for Tug would provide desirable capa-
bility for quick response services.
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The expendable IUS without SEPS could deliver only about one-half this net

payload weight to geosynchronous orbit and would have to deploy all payloads at

one point. Each payload would therefore have to be designed to independently

maneuver to its final mission destination. Without SEPS two IUS plus Shuttle

flights would be required to deploy these seven payloads.

On Figure 1-4 each cylinder represents the envelope dimensions of a pay-

load from the reference mission model. The reference mission model and payload

dimensions were supplied by NASA as guidelines for the study. The code letters

on each cylinder correspond to a payload whose mass, dimensions, and descriptive

title are given in the legend.

This particular example is sortie number 4 for the first SEPS which was

launched in 1981. After completion of sortie number 3 SEPS had been dormant

in geosynchronous orbit awaiting commands to initiate actions for implementa-

tion of sortie number 4. In response to preplanned schedules, the SEPS cruise

down to the elliptical rendezvous orbit (18,520 km perigee by 47,967 km apogee)

was initiated some 17 days previously. In accordance with the mission plan,

Shuttle with IUS and payloads was launched and through the standard mission

procedures IUS was targeted on the known conditions of SEPS. IUS achieves the

target conditions within its navigation and guidance system accuracy.

Ground tract may order an IUS correction or SEPS may initiate final

rendezvous action immediately.

To shorten rendezvous times SEPS will use a combination of its chemical

Attitude Control System (ACS) and ion propulsion system thrusters. SEPS will

be the active partner in the rendezvous and payload transfer operation with

IUS. For this operation with Tug, Tug will be the active partner until station

alongside SEPS at 100 to 300 meters is achieved. After this time SEPS is the

active partner until completion of the payload transfers.

SEPS closes on the IUS which is passive but in an attitude hold mode.

Closing is based on range, range rate, and line of sight data from the LADAR

and/or the scan platform mounted TV system.
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At the option of the SEPS Operations Center (SEPSOC) flight control final

approach maneuvers are controlled by onboard systems in an autonomous manner

or by a payload transfer controller on SEPSOC. Final closing is accomplished

in a parallel or other nonintersecting velocity vector mode so that human or

other errors do not result in catastropic conditions. When on station along-

side Tug or IUS, the ground command pilot steers a manipulator end effector

(hand) out to position to grasp the payload shell. Views from TV cameras,

body mounted on SEPS and on each manipulator arm, are employed as visual aids

in accomplishing this action. After the manipulator "hand" grasping the pay-

load shell has been clamped, the attitude control system of both vehicles are

deactivated to conserve propellants. If a preferred space orientation is

desired for any reason, such as a special lighting effect, one of the vehicles'

ACS would hold attitude. The manipulator arm holds the vehicles in their orig-

inal relative geometric positions.

The other manipulator hand is steered to one side of the transport shell

to release the latch holding the diaphragm to which the first group of pay-

loads are mounted. The manipulator then deploys a payload mast clamp on the

diaphragm and releases the payload umbilical through which the IUS/Tug sup-

plied the payload electrical and data system connections, and then releases

the diametrically opposite latch and grasps the diaphragm for transfer on the

first payload set to the payload transport mast.

The payload transport mast comprises a pair of preformed biconvex sections

edge welded so that, when wound on a drum, the edge welded sections collapse

into parallel metal ribbons held on the drum by the combination of winding ten-

sion and forces resulting from the geometry of the housing. When the drum is

driven in the (unwind) extend mast direction, the ribbons spring to their pre-

formed shape. The biconvex sections are suprisingly strong in bending and have

high torsional rigidity because of the edge welding of the ribbons.

This payload transport mast is commanded out to any position required for
mounting of both payload sets. The diaphragms have spring loaded clamps that

lock onto the mast when pushed against it.
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The manipulator grasps the diaphragm containing the first payload set at

a location where the TV camera on the arm can be slewed so that its field of

view contains the diaphragm edge where the mast clamp is located. The payload

transfer controller (teleoperator) commands the manipulator to lift the pay-

load set out and place it on the payload mast. For direct control, the visual

aids provided are the scan platform mounted TV on the mast side, the scan plat-

form mounted TV on the manipulator side, the TV on the back of the manipulator

hand holding the payload shell which can be slewed to see along or into the IUS-

payload shell, and the previously mentioned TV on the back of the manipulator

holding the diaphragm.

The manipulator's detailed joint motion and arm segment positions required

to achieve "hand" motion along a desired path are controlled by the computer.

The ground controller flies the "hand" in the sense that he commands transla-

tional rates of the hand and rotational rates about its three rotational axes.

The computer also provides damage avoidance by forbidding any geometry of the

arms that will result in collisions of any type. The computer also prevents

acceleration of masses being translated by the arms to velocities greater than

those the manipulator system can brake before the mass contacts any element of

the combined spacecraft and payloads system.

The system has flexibility in the degree of automation which can be

selected for any operation. For example, if after the first hand is steered

to grasp the payload shell at the beginning of the transfer function, the grasp

position is given to the computer along with the shell geometry, payload geom-

etry, initial diaphragm positions in the payload shell, and desired attach

locations on the SEPS transport mast, then the computer could execute the de-

sired payload transfers without active participation by ground controllers.

The memory block size (32,000 words) required for the full automation option

is equal to the memory block size required for the autonomous navigation and

guidance system plus all other SEPS functions and therefore may be considered

as a fully redundant memory block for the SEPS central computer.

1-20



TR-1370
MORMIROP SERVICEI, INC. TR-1370

Trade studies which led to choice of the manipulator mast system as the

simplest for the combined functions of transport, deployment, retrieval, trans-

fer, and servicing of payloads are summarized in Section IV.

Again referring to Figure 1-4, after SEPS has completed the payload trans-

fer operation, the manipulator still holding the payload shell and attached IUS

is used to push the space vehicles apart so that neither vehicle's ACS thrusters

are used.

After the vehicles have separated adequately, if the mission were conducted

with Tug, Tug begins preparation for initiating the phasing orbit and transfer

orbit maneuvers to return it to the Orbiter.

SEPS initiates cruise mode. For the sortie payload group used in the

Figure 1-4 example it requires 57 days to achieve geosynchronous orbit. With

SEPS autonomous navigation and guidance accuracies, the only demands on STDN

during this 57-day period are weekly status checks on SEPS STDN determined

status versus its own autonomously determined status. Payload data require-

ments may dictate more frequent STDN data link usage. Many payload developers

will have facilities such that for appreciable parts of the trip time direct

communications with SEPS will be possible.

Because of SEPS low acceleration it does not use phasing orbits, but is

started on trajectory profiles so that continuous thrusting for the minimum

length of time will bring it to the desired rendezvous or payload deployment

point. The terminal phase of SEPS to a target point for deployment of a pay-

load, or to a rendezvous, is just an extension of the cruise phase as indicated

on Figure 1-5a. For sunlit targets, the SEPS, with information from the ground

as to target payload position, can acquire the target at distances up to 7,223

km and begin line of sight tracking. Figure 1-5a shows the relative motion of

SEPS approaching a target geosynchronous payload when only the ion thrusters

are used in order to conserve ACS propellants. Times are times before station

alongside the payload at relative velocity 0. The arrows indicate the direc-

tion of thrust. Figure 1-5b shows added details of the last few hours.
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Figure 1-5. SEPS RELATIVE MOTION APPROACHING TARGET

The SEPSOC flight control, center would not need to be fully manned prior.

to about 2 hours before payload deployment or retrieval was to begin. Con-

versely, if it is desired to compress the last 6 hours of the operation, ACS

thrusters can be utilized. These thrusters, combined for additive thrust in

the same direction as the ion system, provide about 100 times the acceleration

of the ion system.

During a typical mission cycle, usually 10 or more sorties, SEPS may be

refueled 3 times.

Replenishment of ACS and mercury propellant will not be described in any

detail since, from the payload transfer discussion and the sketches on Figures

1-4 and 1-6, SEPS inherent capability for self-replenishment is obvious. The

relatively small amounts of ACS propellant (N2 H4 ) and the high density of the

mercury propellants result in such small volumes for the replenishment kits
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that they have frequent opportunities to be carried on IUS-Tug sorties where

the payloads are not utilizing all the available cargo space. Thus, flights

dedicated solely to SEPS replenishment were never required throughout the entire

1981 to 1991 time frame encompassed by the reference mission model. Design con-

cepts for the refueling equipment are described later in this report.

SEPS has a significant potential for self-repair as well as for servicing

and maintenance of other satellites. The manipulators with a set of in-space

changeable hands or end effectors are extremely versatile payload servicers,

payload element deployment assistors, and malfunction repair tools. The broad

range of applications of manipulators in automated production and assembly

operations and their uses in nuclear reactor core and fuel element recycling

attest to the well developed state-of-the-art.

NSI does not believe that the high reliability and long service life

expectancy of properly designed SEPS subsystems warrants design for in-space

maintenance in a spacecraft that can be retrieved and returned to earth for

repair. If further analysis indicates in-space maintenance to be desirable,

SEPS physical and functional characteristics are such that it has the inherent

potential to be an "erector set" type spacecraft. Various subsystems can be

attached to a core structure. Figure 1-7, a modification of some NASA tech-
nology program designs, illustrates this. Specific design for in-space main-
tenance, if it were an initial program requirement, should not be expected to
increase total DDT&E program cost and could actually reduce total program cost

if program management exploited the resultant characteristics of the system in
a diligent cost reduction effort. Without further discussion, Figure 1-7 is
presented so that the program concept assessor, with a little imaginative con-
sideration of design detail offered by present technology, can envision the
flexibility of the manipulators for many types of functions:

* space experiment interchange on laboratory type spacecraft

* servicing and repair of other spacecraft

* replacement of SEPS components if such design approach should later
prove warranted.
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1.6.4 Mission Roles for SEPS in Accomplishing the NASA Reference Mission Model

The reference mission model was derived from "The October 1973 Space

Shuttle Traffic Model" (NASA TMX-64751 Revision 2 dated January 1974) by con-

sidering all flights from year 1981 through year 1991. SEPS functions in

accomplishing the mission model are summarized as follows:

* SEPS-Tug combined missions to geosynchronous orbit with intermediate

orbit payload deliveries comprised 124 payload deployments or re-

trievals which represented 93 percent of all geosynchronous payload
missions and 47 percent of all intermediate orbit payload missions

* SEPS accomplishes four of the 16 planetary missions. Because backup

planetary spacecraft are flown, the four missions require eight SEPS

launches

* Tug alone accomplishes only 7 percent of the geosynchronous missions
but 53 percent of the intermediate orbit missions.

* Low earth orbit missions are feasible for SEPS but we found no signifi-
cant cost savings for this transport role.

A summary of the total mission model and SEPS utilization in accomplishing it

is shown in Table 1-1.

Table 1-1. ACCOMPLISHMENT OF PAYLOAD MISSIONS REQUIRING UPPER STAGES

Total Payload Missions 879

* Shuttle Only 644

* Requiring Upper Stage 235

MISSION DIFFERENT TUG WITH SEPS
MISSION TUG ALONE
CATEGORY IN EACH' PAYLOAD RENDEZVOUS

CATEGORY TYPES No. % No. %

GEOSYNCHRONOUS 133 17 9 7 124 93
ESCAPE 45 22 39 87 6 13
POLAR EO 33 5 33 91 0 0
HIGH ENERGY EO 9 3 9 100 0 0
INTERMEDIATE EO 15 2 8 53 7 47
TOTAL 235 49 95 40 137 58

Mission roles for SEPS with the Space Transportation System are seen to

be predominantly in the geosynchronous orbit delivery, retrieval, and payload

servicing area. In the study NSI was directed to establish cost effectiveness
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of an earth orbital SEPS strictly on the basis of direct transportation cost

savings. Many other obvious benefits occur from SEPS capability.

Direct transportation cost savings derive from the fact that with SEPS

the required number of earth orbital Shuttle-Tug flights is 15 less than

required to accomplsih the mission model without SEPS. Other minor factors

such as fewer expended IUS and kick stages result in a net transport cost

saving of $126 million after all earth orbital SEPS development, production,

start up, and operations costs are amortized. The $126 million saved repre-

sents a 217 percent return on the delta $58 million investment in SEPS for

earth orbital operations. The total STS with SEPS Operational Profile to

accomplish the mission model is shown on Figure 1-8. The comparison of cost

for earth orbital STS transport functions that require upper stages with and

without SEPS are summarized in Table 1-2.

Table 1-2. STS COMPARED TO STS WITH SEPS FOR TRANSPORTATION COST
EFFECTIVENESS -- EARTH ORBITAL FLIGHTS REQUIRING UPPER
STAGES

BLSTS BLSEPS
COST ELEMENT (20 KHR-REFUELED)COST ELEMENT

(DOLLARS IN MILLIONS) 106$ NUMBER 106$ NUMBER

SHUTTLE FLIGHTS @ $11.09 1508. 136 1342. 121

IUS EXPENDED @ $5.17 103. 20 98. 19

IUS WITH KICK STAGE @ $6.37 13. 2 13. 2

TUG RECOVERED FLTS @ $.96 87. 91 74. 77

TUG RECOVERED EXPENDED KS
@ $2.16 15. 7 15. 7

TUG EXPENDED @ $14.16 0. 0 0. 0

TUG AND KS EXPENDED @ $15.36 92. 6 92. 6

TOTAL TRANSPORTATION COST 1818. 1634.

$ SAVED IN TRANSPORT COST -- 184.

VEHICLE INVENTORY COST SEPS
@ (VARIES WITH PRODUCTION) 110. 9* 146. 11**

SEPS DEVELOPMENT & OPERATIONS 122. 144.

TOTAL SYSTEM COST 2050. 1924.

NET $ SAVED -- 126.

*8 PLANETARY VEHICLES PLUS ONE SPARE

**8 PLANETARY VEHICLES PLUS ONE SPARE PLUS TWO EARTH ORBITAL VEHICLES

1-27



NORTHROP SERVICES, INC. TR-1370

THIS PAGE INTENTIONALLY LEFT BLANK

1-28



TR-1370

NORTHROP SERVICES, INC.

SEPS THRUSTERS 20,000 HR LIFE
SORTIE LEGS INCLUDE SEPS ORBITAL
"TAXI" TIME.

WHEN DESIRABLE TUG/SEPS CARRIES
INTERMEDIATE ORBIT PAYLOADS TO/

GEOSYNC 177rF FROM SEPS-TUG RENDEZVOUS ORBIT.
BASELINE STSS9.1M H2/02 TUG 1984 ONWARD

• I , jIUS (STRETCHED TANK TRANSTAGE)
FROM 1981 THROUGH 1983
GPME AS RECOMMENDED IN STUDY

30000- t I

I III , ' ITRAJECTORY LEGEND
Sa . i SEPS= 1

1 1 1 SEPS=2 ----

c SEPS = 3 - -

O 
F I I I!

l I Ij

C 1-2 1 RF 2-3 iRF 3-2

• F .-1 RF 1-2 1 - 0RF 2-12

I RFF 1 1  

3i110000

LAUNCH SEPS#2 1  RECOVER SEPS #2
PLANETARY SEPS RECOVER SEPS UNH LAUNCH REFURBISHED

E.O. SEPS #1 #1 & 2 ENKE APRIL 25, 1986 OCTOBERSEPS =1 DECEMBER 1989
JANUARY 1, 1981 RENDEZVOUS PLANETARY SEPS

PLANETARY SEPS PLANETARY SEPS =7 & 8 MERCURY
3 & 4 JUPITER #55 6 ASTEROID ORBITER

ORBITER RENDEZVOUS

PROGRAM
TOTALS

SHUTTLE 19 22 28 27 33 32 30 32 30 30 1 32 315

SHUTTLE/TUG 6 2 8 11 13 12 11 4 6 9 10 92

SHUTTLE/TUG/ 2 1 2 2 2 3 2 4 5 5 2 30
EO SEPS 2 1 I I

YEAR 1981. 1982 1983 1984 1985 1986 1987 1988 1989 1990 1 1991 437

Figure 1-8. SYSTEM OPERATIONAL PROFILE (9.1-METER BASELINE TUG + 25 KW SEPS.WITH
20,000 HOUR THRUSTER LIFE - REFUELABLE)

ORIGINAL PAGE IS PRECEDING PAGE BLANK NOT FILMED

OF POOR QUALITY 'FOLDOUT RAM 1-29/-30

FOLDOU Bdi 1-29/1-30



NORTHROP SERVICES, INC. TR-1370

In the above comparisons the STS operating without SEPS was given every

advantage to assure that its full potential was utilized. No constraints

were placed on Tug operating alone in regard to the number of payloads Tug

could return in a single trip even though Tug would have to have equipment

not presently planned for it that is capable of multiple payload retrieval.

This equipment might be similar to a SEPS manipulator set plus a payload

transport shell. Any of the practical alternates we investigated had nearly

equivalent weight and complexity but a great deal less mission flexibility.

Transport assumptions favorable to STS operating without SEPS in a transport

role were:

* Tug payload transport and retrieval gear weight total was only
136 kg (more realistic weight penalties are 272 kg).

* All multiple payload retrieval flights had payloads collected at
one point by some arbitrary means so Tug did not have to taxi
around geosynchronous orbit to collect them.

* All multiple payloads to geosynchronous orbit were deployed at one
location in geosynchronous orbit and the payloads provided their
own propulsive power to move to their final mission locations.

In other studies conducted on STS without SEPS various analysis groups

have made arbitrary assumptions as to the payload packaging geometry that

would be allowed for multiple payload flights and also as to the total number

of up and down payloads to be allowed on one flight in order to reflect Tug's

limited ability when not equipped with payload handling gear such as SEPS's.

The effect of some of these assumptions on.Shuttle flights required to accom-

plish the mission with and without SEPS as a transport element are shown in

Table 1-3.

Table 1-3. COMPARISON OF.STS FLIGHTS REQUIRED VERSUS ALLOWED PACKAGING
SYSTEM TO ACCOMPLISH ALL.MISSIONS REQUIRING UPPER STAGES,

STS VARIANT/PACKAGING SYSTEM TANDEM SIDE BY SIDE THREE THREEDIMENSIONAL DIMENSIONAL
BASELINE STS 156 150 150 136
STS WITH SEPS 146 129 125 121
STS FLIGHTS SAVED 10 21 25 15

NOTES: 1. Number of payloads for Tug operating alone limited to three up and one down on each sortie for
all cases except those in the last column

2. General purpose mission equipment designs evolved in this study make any number of payloads
lH'r sortie feasible up to STS volume or mass limits

3. S8IS high performance essentially removes payload weight per sortie limits
" 1. .l ilabhle IylMod volume in Orbiter cargo bay becomes the significant limiting factor.
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NSI therefore believes that the cost saving equivalent to a reduction in

Shuttle-Tug flight requirements by 15 flights is an extremely conservative

estimate of transportation savings occurring from operation of the SEPS as an

STS transport element. NSI believes that considerably more than the previously

presented 217 percent return on EO SEPS development and operational start up

cost investment would be achieved for actual operations conducted under the

general management and operational concepts described in this study final

report. Shuttle flights and STS cost savings are not the only benefits SEPS

provides. Its real potential is in the major capabilities not taxed by this

mission model and in its versatility for missions not yet identified.

1.6.5 SEPS Benefits to IUS, Tug, and Payloads

In addition to the transportation cost saving defined earlier, SEPS pro-

vides other programmatic cost savings and operational simplifications.

BENEFITS RELATIVE TO IUS

* The IUS is not required to have a navigation and guidance system

capable of active participation in rendezvous operations even if

it is a recoverable system.

* Costly research and development programs to improve propulsion

capability or reduce inert stage weights are not required since

SEPS can make up any IUS performance deficit.

* IUS flight preparations are greatly simplified. Payloads can be

individually mounted into the transport shell. The multiple payloads
in the transport shell package can be checked for flight readiness

combined with IUS in a single mating operation. IUS plus multiple

payloads are presented to Shuttle as a single payload.

* It is feasible to recover IUS on many missions if it is equipped with

the proper avionics equipment.

BENEFITS RELATIVE TO TUG

* Schedule and cost risk associated with high performance requirements
of the Tug program are removed.

* Tug operations are simplified. Multiple payloads are presented to

Tug as a single package ready for flight.

* Tug docking and payload interface, other than electronic, may be

developed for a single payload interface rather than for multiple
docking and retrieval operations.

* Fifteen to 27 fewer Tug flights are required to accomplish the

mission model.
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* Tug does not have to be designed for the long stay times in space

necessary to perform orbital taxi missions for multiple payload
deployment or retrieval.

BENEFITS RELATIVE TO PAYLOADS

* Reduction in transportation cost prorated to each payload. Average
number of payloads per flight in SEPS case is approximately four and
for Tug alone is less than two.

* Essentially removes weight restrictions for payloads. Development
cost increases to solve missed initial program weight goals will not
be incurred.

* Higher initial payload weight allowances can be used to reduce devel-
opment cost, improve reliability, or to provide for functional capa-
bilities not feasible for payloads delivered by Tug alone.

* SEPS can deploy various payload elements (or undeploy them for re-
trieval) to either backup payload on-board systems or relieve the
payload entirely from self-deployment requirements. This should
considerably reduce the development cost of some payloads.

* Most payload failures prior to end of design life are of the infant
mortality type. SEPS can maintain station alongside a recently
deployed payload with its TV cameras transmitting visual records of
the payloads deployment and initial functional test responses to the
payload developer's ground control commands. SEPS can assist in
correction of the malfunctions. Upon ground command SEPS can return
the payload on the next rendezvous with Tug, if onorbit correction
of the malfunction was not possbile.

* SEPS can service payloads by providing for substitution of new sensor
packs, or different experiments that may extend the usefulness of
large optical or other instrument platforms without requiring their
recovery or replacement in space.

* SEPS can provide replenishment services for payload expendables.

* For planetary missions SEPS allows significantly greater payload mass
and may provide power, communication, attitude,, and thermal condi-
tioning support to the payload. For some planetary orbiting payloads,
SEPS can modify orbital parameters to conduct complete surface mapping
operations plus mapping of fields and particle physical phenomena in
space around the planet.

* Combination of science packages with SEPS can provide nearly ideal
spacecraft for comprehensive surveys and continuous monitoring of
earth's magnetosphere and near earth solar system space. "Out-of-the-
ecliptic" missions are examples of the latter. New spacecraft do not
need to be developed for these missions. SEPS itself may be consid-
ered a "standard" spacecraft.
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* Where the payload scientific objectives require mission orbits so

greatly separated in energy level that it is not practical to pro-
vide spacecraft propulsion to accomplish the change, SEPS can taxi

the spacecraft to its new orbit, thus saving a new Shuttle launch of

a new spacecraft.

1.6.6 New Mission Applications for SEPS

This study, by work statement requirements, was directed primarily toward

earth orbital mission roles, development of payload handling concepts, and

analysis of operation support requirements. Roles in accomplishing the mission

model with STS were described in some detail. Other potential applications

of SEPS are:

* Spacecraft host supplying power to a direct broadcast satellite for

educational TV and general communications to family units and villages
in remote areas of the US or of the world. A valuable function of

the system is its use in the event of hurricanes, ice storms, or any
natural emergency that isolates communities by interruption of their
normal communications channels. The system could serve ships at sea,
small fishing craft, and oil or other geodetic exploration units. The

system would provide one-way TV and two-way voice communication.

* Support and provide space mobility for a high resolution earth observ-
ing satellite providing high data rate real time information on weath-

er or other local phenomena. High resolution optics and other sen-
sors could switch systematically from locality to locality providing

detailed scan information for each area for the time the local area
was under observation.

* Collection of space debris and removal from frequently used areas of
near earth space by return to ground via Shuttle and Tug or transfer
by SEPS to higher infrequently used space areas.

* Transportation of very large space structures from their initial
assembly positions in low earth orbit to final functional positions.

* Mobile teleoperated assembly device for construction of large space
structures.

1.6.7 Trade Studies and Technology Assessments

As in all systems, trade studies can be conducted at every level of the

system's functional design detail. A principal objective of this study was to

establish the first level trade of any system; namely, is its existence and

operation justified on the basis of cost effectiveness, other identifiable

benefits, and predictable future benefits?
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The priority and scientific work of the planetary, cometary, and solar

space exploration missions justifies initiation of the basic SEPS program.

Investigations conducted during this study indicate that a reasonable case for

initiation of the program can be made solely on the basis of its value for

earth orbital missions and its cost effectiveness as an element of the Space

Transportation System. NSI believes the combination of values for solar

system exploration and earth orbital applications justifies high priority for

early implementation of a SEPS development program.

Given a baseline SEPS, high cost effectiveness from its operation as an

element of STS was established. Within the scope of this study it appeared

that several major configuration trade studies and reassessments of baseline

subsystem definitions were warranted.

The major trade study was evolution of the General Purpose Mission Equip-

ment (GPME) concepts that simplify Tug operations with multiple payloads,

simplify Shuttle Orbiter interfaces, and also provide SEPS with a highly

flexible payload support and servicing subsystem. The results of that study

evolved the concept presented earlier. The key element of the concept was

SEPS manipulator system. Considerations leading to the selection are summar-

ized in Table 1-4.

CHOICE OF SEPS POWER LEVEL

The next most significant configuration definition choice is associated

with SEPS power level. The decision becomes largely a matter of judgement

since no clear mission requirement sets a definite minimum power level in the

range of practical choices and no technology factor or cost factor produces a

sharp step in development difficulty or cost as power increases.

The transport capability and operational flexibility of SEPS with the STS

is almost directly proportional to power level. To demonstrate this, NSI

developed complete System Operational Profiles for accomplishing the reference

mission model. The 25 kw NASA baseline profile was shown on Figure 1-8.

Figure 1-9 shows the sortie trip times required by a 25 kw SEPS to accomplish
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Table 1-4. PAYLOAD SUPPORT, HANDLING AND SERVICING CONCEPT COMPARISON

ARTICULATED DOCKING TRANSPORT SHELL, TRANSPORT SHELL,
FRAME AND ARTICULATED EXPENDABLE BOOM AND PAYLOAD MAST AND
MULTIPLE PAYLOAD SIMPLIFIED MANIPULATOR MANIPULATOR SYSTEM
SUPPORT STRUCTURES

ADVANTAGES ADVANTAGES ADVANTAGES

* SIMPLEST ONBOARD * MODERATE ONBOARD 0 GREATEST INHERENT
SOFTWARE SOFTWARE REQUIREMENT CAPABILITY FOR PAYLOAD

* SIMPLEST PAYLOAD SERVICES AND

DISADVANTAGES TRANSFER FUNCTION MAINTENANCE

* MINIMIZES DESIGN CON-
* MOST COMPLEX FLIGHT STRAINTS ON PAYLOADS

OPERATION DISADVANTAGES
* SIMPLEST AND MOST FLEX-

* MOST COMPLEX FLIGHT 0 LIMITED SERVICING IBLE INFLIGHT OPERATIONS
HARDWARE AND ONORBIT
LIMITED GPME - REQUIRES MAINTENANCE ABILITY * SIMPLEST GPME & TUG PAY-

* LIMITED GPME - REQUIRES LOAD INTEGRATION
TAILORING OF TUG * INTERMEDIATE FUNCTION
MISSION EQUIPMENT & ADAPTABILITY TO
ORBITER TO PL ADAPTERS UNPLANNED MISSION 0 HIGHEST MISSION SUCCESS
FOR EACH SORTIE EVENTS PROBABILITY

* EITHER SERIOUS PL
DESIGN CONSTRAINT OR DISADVANTAGES
VERY LIMITED SERVICING * ONBOARD SOFTWARE
ABILITY REQUIRES 32K WORD

* NOT ADAPTABLE TO UN- MEMORY STORAGE
FORESEEN OR UNPLANNED
MISSION EVENTS

* TOTAL COMPONENTS
REQUIRING POSITIONING
& FEEDBACK INFO EXCEED
OTHER SYSTEMS

delivery and retrieval missions in conjunction with a 9.1 M H 2/0 2 high per-

formance Tug. The solid curves are the theoretical times required for SEPS

to complete a mission with the maximum payloads that Tug could bring to the

SEPS/Tug rendezvous orbit for the Tug one-way velocity increments shown by

the abcissa.

The cross-hatched areas indicate the range of Tug velocity increments

actually required to accomplish the mission model. The black dots are individ-

ual sortie trip times calculated with radiation degredation effects, and so

forth. Figure 1-10 shows the sortie trip time savings of a 50 kw SEPS relative

to the 25 kw SEPS. The system operational profile, as illustrated in Figure

1-8, does not utilize the full capability of a 25 kw SEPS until 1989 and does
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not require two SEPS on orbit until 1990. Therefore, use of a 50 kw SEPS

saves only 2 more shuttle flights than a 25 kw SEPSi. The advantage of increased

power for earth orbital operations with the reference mission model is there-

fore due only to:

* Reduction of the time required for execution of individual sorties

* The speed with which SEPS could respond to unplanned revisions of
flight schedules

* Quick response to special demands for maintenance and/or retrieval of
malfunctioning satellite.

Conversely, the DDT&E cost to develop a 50 kw SEPS was estimated by NSI to be

only 7.5 percent greater than for a 25 kw SEPS so that a very small additional

investment produced a transport vehicle of nearly twice the inherent capa-

bility. Figure 1-11 shows a size comparison between 50 kw and 25 kw power

level SEPS. .Table 1-5 shows a comparison of 25 kw and 50 kw basic costs.

Table 1-5. COMPARISON OF 25 kw TO 50 kw BASIC COSTS

DEVELOPMENT FIRST UNIT COST
COST ELEMENT 25 kw A FOR 50 kw 25 kw A FOR 50 kw

STRUCTURES & THERMAL CONTROL $ 4.8 $ 1.2 0.1

PROPULSION 9.1 2.0 0.8

POWER DISTRIBUTION 1.0 0.4

SOLAR ARRAY 7.8 5.8 6.1

DATA MANAGEMENT 3.4 1.0

COMMUNICATION 2.2 1.2

ATTITUDE CONTROL/N&G 9.2 2.0 0.2

INTEGRATION & TEST CHECKOUT 6.7 1.0 1.1 1.0

TEST HARDWARE 21.3 6.5

GSE 5.0

SOFTWARE 4.5.

LOGISTICS 0.5

SE&I 6.8 1.4

PROGRAM MANAGEMENT 6.9 1.4

BASIC SEPS $89.2 a7.5. $17.5 A8.2:.
A FOR EARTH ORBITAL FUNCTIONS 8.3 1.0

97.5 18.5

A FOR TUG PAYLOAD SHELL AND
DIAPHRAGMS 2.5 0.8

$100.0 A% 7.5 $ 19.3 A% 42
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For the planetary missions the rate of gain in usable net scientific

payload as power level increases varies considerably with the mission. In

addition, the gains are sensitive to the mass-to-power ratio so that design

approaches for SEPS thruster subsystem that result in high mass-to-beam power

ratio or unjustifiably conservative mass estimates will cause apparent "optimum"

power levels to be considerably lower than the true optimums. Even on the

most conservative basis for mass-to-power ratio, such as used in Rockwell

International 1972 and 1973 studies, trends for continuing growth in available

net payload are indicated as power levels extend beyond 25 kw.

The planetary science packages conceived for most of these missions do not

indicate the need for the higher payloads associated with the higher powers

desirable for a SEPS operating in earth orbit. It is the opinion of this

author.at least, that the planned sciences packages are rather minimal and

that a great deal more useful information would be obtained if the available

payload mass allowed by the higher powered SEPS were used to fly on the plane-

tary missions, some modification of the higher resolution, versatile sensors

and instruments contained in proposed satellites such as the Synchronous Earth

Observing Satellite (SEOS) and other environment determination and monitoring

satellites. Figure 1-12 presents a review of typical planetary missions from

earlier SEPS work by Rockwell International. The curves that show.parametric-

ally the influence of trip time and power level; the ordinates labeled "Approach

Net Mass" are all masses (SEPS nonpropulsive and gross payload) in addition to

the mass of the solar arrays and the thruster subsystem. If a standard core

SEPS were used as the spacecraft bus, the gross payload would be approximately

net mass minus 500 kilograms. For the Jupiter Orbiter the payload must include

the chemical retro rockets for capture maneuver into a highly elliptical

Jovian orbit.

The four sets of mission charts demonstrate two salient features. In all

cases, increased power increases payload. For the mission beyond 1 AU power,

SEPS can provide only limited payload support power if developed at the 25 kw

of solar power level.
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In the case of the Jupiter Orbiter mission, increased power beyond 25 kw

would allow SEPS thrusters to operate during the approach to Jupiter, aiding

in the capture maneuver, and also allow SEPS to modify the Jovian orbit for

close inspection of each Jovian moon. When not thrusting, more power is avail-

able for communications so that high resolution imaging can be conducted in

shorter periods of time. All of the RI work presented on Figure 1-12 was con-

ducted with very conservative mass-to-power ratios based on processing screen

power with associated losses and weight penalties. The Jupiter missions, which

chemically retro SEPS into the capture orbit, will benefit greatly from improved

(lower) mass-to-power ratios.

Figure 1-13 shows NSI's analyses of SEPS potential for an exciting new

set of "out-of-the-ecliptic" missions that allow examination of the solar

magnetosphere and solar surface with high resolution instruments over the en-

tire solar sphere. In the particular example shown, the SEPS is launched by

a Titan Centaur vehicle. The curves demonstrate the effect of three parameters.

The curve showing the higher heliographic inclination versus mission time illus-

trates the advantages of increased power, better power-to-mass ratio by taking

thruster screen power directly from the solar arrays, and the value of the op-

tion of operating at a factor of 2 greater (2200 Vs/1100 Vs) thruster screen

voltage to achieve an Isp of 4243 seconds rather than a baseline 3000 seconds.

The higher achievable inclination for the upper curve is due solely to the

higher Isp and lower mass-to-power ratio from direct use of solar array power

for screen power.

A design approach similar to that used on the 50 kw system but at 25 kw

level would finally achieve the 80-degree inclination but in a much longer

trip time.

This discussion has not covered all the implications of Figures 1-12 and

1-13. Thoughtful perusal of these figures will indicate that desirable char-

acteristics for a standard core SEPS to achieve enhanced planetary mission

suitability are:

* Improved average thrust-to-mass ratios
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e- Option to operate at high or low Isp to match requirements of a

specific mission

* Reserve power to support larger payloads and.higher communications
rates at extended distances from the sun.

* Maneuver power to extend scientific mission capabilities after
arrival at the target planet.

Improved average thrust-to-mass ratio can be achieved by:

* Increased solar array area and higher kw/kg values for the arrays
by fuller exploitation of present technology

* Taking thruster screen power directly from the solar arrays and
improving power processor efficiency for the remaining =20 percent
of the power

* Fuller utilization of the ion thruster's inherent capabilities
indicated by the last several years of NASA's technology program.

RELATED TECHNOLOGY ASSESSMENTS

NSI has reviewed the available technology base derived from NASA's

thruster technology and research programs, has reviewed industrial develop-

ments of devices suitable for solid state power processing, and has reviewed

the literature on solar cell technology. The conclusions of this assessment

are:

* Thrusters have the inherent ability to operate over screen voltage
ranges of about 800 v to more than 2800 v and at beam currents cor-
responding to .05 amp to 4 amps in a 30 centimeter thruster

* Solar arrays are both feasible and desirable direct sources of
thruster beam power

* Higher voltage solar arrays (400 v up to 1100 v) are both feasible
and desirable

* The potential exists for lower cost and higher reliability solar
arrays than those assumed in prior studies

* Higher voltage power processors than those baselined for prior
studies (200 v to 400 v) are feasible

0 Exploitation of the technology base will provide a SEPS of signifi-
cantly greater mission flexibility than:the baseline derived from
previous studies.
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1.7 IMPACT OF SEPS OPERATION WITH STS ON ORBITER, IUS, TUG PHYSICAL
INTERFACE REQUIREMENTS

1.7.1 General Considerations

The delivery to or retrieval of SEPS from typical IUS/Tug payload transfer

orbits imposes no additional physical interface requirements since SEPS as an

individual payload to be delivered has very modest support requirements well

within the design capabilities proposed for IUS and Tug or those baselined for

the Orbiter.

Figure 1-8, the System Operational Profile, showed that only four

scheduled SEPS launches and one retrieval were required to accomplish the

reference mission model from 1981 through 1991.

SEPS augmentation of IUS-Tug transportation capabilities allows the use

of the GPME concepts described earlier, which greatly simplifies the Orbiter,

IUS, and Tug ground operations involvement in multiple payload delivery oper-

ations. The transport shell always presents a single structural payload

interface to the IUS, Tug, and Shuttle Orbiter. Because all payload inertial

loads are distributed into the shell which distributes the total load to

the Orbiter's cargo bay longerons in an acceptable way, loads on IUS and Tug

are lower than design limit loads derived from certain individual payloads

carried by IUS and Tug.

The additional interface requirements for STS elements therefore derive

from the fact that with SEPS in the system multiple payload cargo manifests

may contain up to seven or eight payloads instead of three to four. The
primary impact, as might be expected, is in the avionics support areas of
telemetry, command, and power supply.

Other potential added demands are in the areas of propellant dumping,
venting, and RTG cooling, or other payload environmental factors. None of these
represent extra requirements since the character of the multiple payloads with
SEPS does not present a greater requirement than some of the more complex single
and dual payloads transported without SEPS. Manifolding of multiple payload
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requirements on the transport stage results in interfaces equivalent to a

single payload.

Safety and interface discussions will be considered in the following

sequence:

* SEPS as one of a multiple payload group for delivery in terms of

Orbiter safety requirements and interfaces

* Multiple payload avionics potential requirements

* Gases and liquids venting and dumping requirement

1.7.2 SEPS Safety and Interface Considerations in Relation to Orbiter

Figure 1-14 shows SEPS with other schematically represented payloads in

a transport shell with Tug in the Orbiter cargo bay. IUS would mount simi-

larly. The transport shells for IUS and Tug are essentially identical and

could be developed for interchangeability. SEPS is mounted on a standard GPME

diaphragm and has no direct structural interface with the Orbiter or IUS-Tug.

SEPS, if nominally fueled for the initial deployment mission, has a mass

of about 2725 kilograms (6,000 pounds). SEPS contains only four fluids:

pressurizing N2, battery fluids, mercury, and hydrazine.

The pressurizing N2 for the mercury expulsion system has a peak charged

pressure of 58 N/m2 (40 psia). The N2 is contained inside the mercury propel-

lant tank; the tank design limit load is controlled by the 9g Shuttle crash

load factor. Design for containment to peak cargo bay temperatures is a

negligible mass penalty. Pressure relief venting to the cargo bay interior

is acceptable. No caution and warning (C&W) signals or control from the orbiter

is required.

The N2 for ACS has a peak charge pressure of 290 N/cm 2 (200 psia) and is

also within the pressure shell of the N2H 4 tanks. The tanks contain 109 kg

(240 pounds) of N2H 4 . The tanks will be designed for containment of N2 and

N2H4 at peak cargo bay temperatures. Backup N2 pressure relief vent to the

cargo bay will be used for added safety. No propellant dump for this quantity

of N2H4 is required. No C&W or command lines to or from the Orbiter are required.
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Because of the space thermal requirement both propellant tanks are insu-

lated. No condition that has not destroyed the Orbiter will cause monopro-

pellant decomposition of the N2H4 in SEPS.

SEPS, like most long-life spacecraft, uses Nickel-Cadmium batteries

which are sealed. The batteries will be designed for containment. No C&W

or command lines to or from the Orbiter are required.

SEPS is designed to have no separation or deployment ordnance. All sepa-

ration functions are controlled by reversable motors or with the aid of the

manipulators. Orbiter may derive status information and command control for

latchings.

1.7.3 IUS-Tug Avionics Support to SEPS

NSI believes the most desirable approach to avionics support for all pay-

loads mounted on Tug is from Tug, since the support must be continued after

separation from the Orbiter. During ascent, Orbiter must support Tug by pro-

vision of primary power and data links into the Tug.

The following requirements for avionics support of SEPS from Tug exist:

* During prelaunch after transport shell has been mated to Tug and
after installation in Orbiter:

* 150 watts power and 1,000 kbits/sec digital data during brief
flight readiness status check periods. Thermal control power
of about 200 watts could be required depending on temperature
of Orbiter's N2 purge gases

* During Orbiter ascent:

* Nominally no support; 200 watts periodically if required for
thermal control

* During Tug deployment parking orbits and ascent to SEPS initial
parking orbit:

* 200 watts primary power for thermal control

* SEPS initial startup and transfer of initial payload to SEPS pay-
load mast:

* 600 watts, 10,000 bits/sec digital TV data and telemetry. Uplink
data rate 10 kbits/sec. This support requirement would last
approximately 1 hour. 1000 watt power required. Total energy
required 3 kw/hr.
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This deployment and initial payload transfer sequence is shown schemat-

ically on Figure 1-15. All of the above requirements are within Tug proposed

capability. As indicated on Figure 1-15, one of the SEPS phased array antennas

is exposed and SEPS' own systems can supply the capability.

VC
INITIAL ORBIT FOR SEPS DEPLOYMENT DEPLOY PAYLOAD MAST ARMS

RELEASE DIAPHRAM LOCK

ONE ARM FOR TV
VISIBILITY AND ONE

FOR REMOVAL OF PL SET

THIS ARM
PLACING
PL ON MAST

THIS ARM PROVIDING
TV VISION OF MAST *

SEPS DEPLOYING WINGS TUG READY FOR
FOR DEPARTURE RETURN TO SHUTTLE

Figure 1-15. PAYLOAD TRANSFER INITIAL SEPS SORTIE

1.7.4 Tug-lUS Support to Payloads in Transport Shell

McDonnell Douglas and General Electric, teamed for the MSFC directed "IUS/

Tug Payload Requirements Compatibility Study," reported in their midterm review

the results of a payload design engineering committee analysis to determine

nominal, maximum, and minimum values of Tug payload support requirements.

Consider that peak power and peak data rates are part of the final deploy-

ment functional checks and would be conducted on SEPS after SEPS had achieved

the payload mission deployment conditions. SEPS, in this case, relieves Tug of
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ever having to meet the peak power and data rate requirements indicated by the

committee analysis.

In further analysis the committee changed their approach to checkout test

while still onboard a transport vehicle. Only payload status checks will be

conducted until the payload spacecraft are deployed. All spacecraft payload

demands indicated are therefore reduced to data rate levels of =1 kbit/sec and

power levels to 200 or less watts. SEPS data rate capabilities are in the

megabit range so this poses no problems for SEPS.

1.8 PROGRAM SUPPORT AND COST ESTIMATES

1.8.1 Program Support

SEPS is relatively simple. It is nearly all electrical. It has compact

dimensions for transport and storage. Very modest buildings and checkout equip-

ment will support its few launch preparation and refurbishment activities. The

largest cost in SEPS operations is for mission planning and flight control per-

sonnel. These personnel must know SEPS configuration, functions, subsystems,

and components in detail. The personnel that support the launch preparation

functions, the one or two refurbishments, and the sustaining engineers must

know the system intimately.

Reference to Figure 1-8, the System Operational Profile shows that in

11 years there are only eight planetary and three earth orbital launches to

accomplish the reference mission model. There is only one SEPS refurbishment

for relaunch. There are only 30 earth orbital sorties by SEPS over the

11-year period. Recall the SEPS autonomous cruise and autonomous terminal

approach phase of the rendezvous (when desired) capability so that a sortie,

typically 90 days or less total time, has only four periods of peak activity

where the mission planning and flight control crews are fully utilized. These

periods of peak activity are associated with the following functions:

* Detail planning of the next sortie in conjunction with the payload
sponsors and developers and Shuttle flight planners.

* Systematic retrieval of the payloads to be returned to earth by
Tug and orbiter, and initiation of the cruise phase down to the Tug
rendezvous orbit
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* Rendezvous with Tug, delivery of down payloads, acceptance of up

payloads, and initiation of the ascent cruise phase to deploy up
payloads at their mission conditions

* Deployment of payloads at their mission station and performance of

servicing functions for any other payloads requiring that function.

Readers interested and experienced in mission planning and flight control

recognize those four functions in the past space experience as time consuming

and demanding of a large investment in man-hours. For this SEPS group, how-

ever the longest involvement of any intense activity is with the payload

sponsors in the detail mission planning. Other functions require two to three

days' full utilization of a 16-man team around some key flight operation. A

small investment in time and people (in spite of past experience) can accomplish

in the SEPS program the four functions described on the preceding page, because:

* 13.2 million dollars is. allocated for initial software (onboard
$4.5 M) and flight control center ($8.7 M) software to automate the

mission planning and flight control

* The group does only the SEPS specific detail planning. Two other

principal groups providing controlling event sequences and system
function timelines to which SEPS must perform. The advance planning
input comes from the Shuttle/STS Utilization and Master Scheduling
Center. The detailed specific mission timeline event sequence for
activities influencing Shuttle is established by the Shuttle
Operations Center.

In view of the above factors, NSI believes that a small 45-man team,

organized as shown on Figure 1-16, can accomplish the complete program support.

Volume IV of this series, Design Reference Mission and Program Requirements,

discusses the subject in some detail. Reference to Volume III will provide a

fuller understanding of the complete sortie and mission cycle for SEPS.

SEPS transportation due to its small packaged size (3 m x 3 m x 5 m) and

light unfueled packaged mass (1814 kg) is convenient and inexpensive. The

total supporting equipment and facilities investment is $8.8 million, $5.3

million of which are allocated to computers and peripheral equipment. Computers

are under-utilized except for the previously defined periods of peak activity and

could be utilized by the SEPS operations center (SEPSOC) host institution for

its other functions.
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SUBSYSTEMS NEW SOFTWARE DEVELOPMENT AND PRIORITIES AND SCHEDULE WITH A

MAINTENANCE NONDEDICATED COMPUTER COMPLEXI

SUSTAINING ENGINEERING AND MAINTENANCE DATA TRANSMISSION LINE MANAGEMENT
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SOFTWARE DEFINITION/GENERATION FOR INCONTROL CENTER MAINTENANCE

CHECKOUT. MONITORING. AND OPERATION OF
SEPS SUBSYSTEMS FLIGHT DYNAMICS ENGINEER (61

LAUNCH PREPARATION AND LAUNCH SUPPORT SOFTWARE MANAGER (5)

FLIGHT SUPPORT DIRECTOR (2)

DATA SYSTEM MANAGER (6)
PROPULSION AND MECHANICAL SYSTEMS
ENGR (4) CONTROL CENTER MAINTENANCE (3)

AVIONICS SYSTEMS ENGINEER (4)

PAYLOAD TRANSPORT/SERVICING SYSTEMS I ENTIRE GROUPNSUPPORTS A RENDEZVOUS AND

ENGR 15) . PAYLOAD TRANSFER OPERATION. FCC

(THESE MEN ARE ALSO THE SEPS PILOTS STAFFING DURING THIS PERIOD IS 16.

FOR RENDEZVOUS AND MANIPULATION
OPERATIONS)

Figure 1-16. SEPS PROGRAM SUPPORT ORGANIZATION

Because of the above factors, NSI believes that SEPSOC facility and

equipment cost factors should not control the location of SEPSOC. To accom-

plish the program cost savings indicated by the 45-man total program support

team, the SEPSOC must be located at the center that is given the total program

responsibility for SEPS.

1.8.2 Program Cost Summary

The cost estimation assumptions used in the analysis are as follows:

There will be a single SEPS DDT&E and production program managed by one

organization. The basic core vehicle will be capable of accomplishing either

the earth orbital functions or the deep space mission when certain components

and sensors are added. This will, on occasion, result in SEPS implementing

missions which do not require its full capability in solar array power or

thrusters. NSI strongly believes it is false economy to have tailored, reduced
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capability vehicles just to save a few hardware production dollars on a

specific production vehicle. Therefore, the single DDT&E program will phase

into production at the most economical rate for the total inventory. Each

SEPS, after production, will undergo a rigorous flight readiness check as a

part of the final acceptance testing. Then it will be stored in a hermetically

sealed, inert gas filled container with its status check and power supply

hard lines used in ascent flight carried through the container walls to a test

umbilical. As each SEPS is completed, accepted and installed in its storage

container it goes to the launch site for immediate launch or to the SEPSOC

for inventory storage.

When production of inventory and refurbishment spares are complete, the

DDT&E/production contract is terminated. There is no sustaining engineering

support team at any contractor or subsystem supplier's plant included in these

cost estimates after production is complete. This does not preclude NASA from

electing to have SEPSOC operated by a contractor and the DDT&E contractor may

be the successful bidder for the SEPSOC support.

It is management wise and technically feasible that the 45-man program

support team at the SEPSOC make any modifications or system changes found

later in the program to be desirable.

Other assumptions are:

* Production is continuous for 11 vehicles. The first vehicle is
delivered 30 months after authority to proceed (ATP).

* All $ are 1974 $.

* There are four planetary missions, each flown with a backup space-
craft requiring a total of eight planetary SEPS. Only two EO SEPS
are required. One production spare is planned and the integrated
system test article is refurbished at the end of production to
provide a second spare.

* Two refurbishments are included in the cost estimates which would
extend the SEPS capability beyond the 1991 operational time
ground rules for this cost effectiveness study.

* No costs are included for mission special planetary spacecraft
sensors.

* The center given responsibility for the science package and mission
operation will assume flight control of SEPS and the science package
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at some time after cruise mode is established for the initial planetary
trajectory. Only periodic advice or consultation from SEPS vehicle
systems specialists will be provided on request of the planetary con-
trol groups after cruise mode is established.

Table 1-6 presents the SEPS total program costs including planetary

vehicle core development costs and the launch support operation for eight

planetary vehicles.

Table 1-6. SEPS SUMMARY COSTS

STAGE DDT&E 97.5

EO Functions (Transport Mast & Manipulators) (8.3)
Basic Stage (89.2)

STS GPME DDT&E 2.5

PL Shell & Diaphragms

FLIGHT ARTICLE PRODUCTION 145.9

8 Planetary Vehicles (97.6)
3 EO Stages (39.6)
STS GPME (1.5)
Stage Refurbishment and Maintenance 7.2)

SEPS OPERATIONS CENTER INITIAL COSTS 17.9

Facility and Equipment 88
Initial Software Package 8.7
Initial SEPSOC Spares 0.4)

SEPS SYSTEMS OPERATIONS 26.2

Personnel (45 men 11 years) (23.7)
Computer Support (2.1)
Flight Article Consumables (0.4)

TOTAL PROGRAM COSTS 290.0
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Table 1-7 is the DDT&E cost broken down by major subsystem and functional

area of the program.

Table 1-7. SEPS DEVELOPMENT COSTS

TOTAL CORE PLANETARY EO
DDT&E VEHICLE PECULIAR PECULIAR

STRUCTURES & THERMAL CONTROL $ 4.8 $ 4.8

PROPULSION 9.1 9.1

POWER DISTRIBUTION 1.0 1.0

SOLAR ARRAY 7.8 7.8

DATA MANAGEMENT 3.4 3.4

COMMUNICATION 2.2 1.4 $ 0.5 $ 0.3

NAVIGATION & GUIDANCE/ATTITUDE CONTROL 9.2 6.0 2.2 1.0

INTEGRATION & TEST CHECKOUT 6.7 6.7

TEST HARDWARE 21.3 19.8 1.1 0.4

STAGE GSE 5.0 4.0 0.2 0.8

SOFTWARE 4.5 4.5

LOGISTICS 0.5 0.1 0.4

S.E.&I. 6.8 6.8

PROGRAM MANAGEMENT 6.9 6.9

BASIC SEPS 89.2 82.3 4.0 2.9

L FOR EARTH ORBITAL FUNCTIONS OR
(PAYLOAD MAST & MANIPULATOR) 8.3 8.3

TOTAL 97.5

Figure 1-17 shows the prime contractor's total manloading versus time for

DDT&E and production for the first 36 months of the contract. Beginning at 30

months into the contract, SEPS are delivered at the rate of three per year

until delivery of the 12th SEPS (the refurbished test article). Total DDT&E

plus production duration is approximately 6 years.
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Section II

TRAJECTORY AND TRAFFIC MODEL ANALYSIS

The prinicpal objectives of the traffic model analysis were:

o To provide a data base for SEPS transport cost effectiveness by

establishing the minimum number of Shuttle flights that would accom-

plish the mission model for an STS without Earth Orbital SEPS and for

an STS with Earth Orbital SEPS.

o To determine the sensitivity of the Shuttle flights required by

various operational ground rules such as method of payload packaging

or specification of an arbitrary limit on the number of payloads on

Tug in a single flight.

o To establish the sensitivity of the Shuttle flights to Tug performance

and length.

o To support trade studies on SEPS power level and specific impulse.

o To identify the number of individual payloads and the mix of differ-

ent types to be delivered, retrieved, and serviced on each Tug-SEPS

sortie so that GPME and E O SEPS equipment functional requirements

could be identified.

In order to meet these objectives, NSI formulated an analysis technique

that identified the ordered series of cargo manifests (list of individual

payloads assigned to a specific flight) that would result in the minimum

number of Shuttle-Tug kick stages and SEPS sorties to accomplish the reference

mission model. NSI refers to this ordered series of flights as a traffic

model or System Operational Profile.

This analysis effort'required assignment of payloads to each flight

within the restrictions of the Shuttle or Tug payload capability and the

Shuttle cargo bay size limits. The number of SEPS vehicles required as well

as the flight schedules to support the mission model are dependent on the SEPS

sortie trip times as soon as flight frequencies require full utilization of

SEPS.

The determination of sortie trip times evolves generation of SEPS low-

thrust trajectories and changeover orbit characteristics. Two computer
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programs were used for this work. Payload flight assignments, SEPS trip time

calculations, and flight scheduling were done by the WHATIF program. This

program was jointly developed by MSFC and NSI. It is a basic program used by

MSFC for the generation of STS traffic models, cost effectiveness analysis of

STS, and trade studies to define Tug characteristics. SEPS trajectories and

changeover orbits were generated by the MOLTOP program. Major modification of

the WHATIF program was necessary to provide SEPS performance and scheduling

capability.

Four mission roles were initially envisioned for SEPS where SEPS could

effectively augment the performance of Shuttle and Tug. For reasons discussed

in the following sections, the practical SEPS-Tug sorties become composites

that include the two major earth orbital roles. Only the planetary mission

role remains distinctly different.

Traffic model analyses with and without SEPS were done for a number of

Tug and SEPS configurations, principally Tugs shorter than the 30-foot base-

line and SEPS with higher power and specific impulse than the baseline 25 kw

SEPS. Results of these analyses show the value of SEPS and the effect of

configurations other than the baseline on the Space Transportation System cost

(expressed as number of flights required by the mission model).

A similar analysis assessed the impact on STS cost of the following SEPS

operational modes and constraints:

o In-space refueling of SEPS

o Elliptical versus circular changeover orbits

o Delivery of payloads at intermediate orbital altitudes by Tug on the
way to changeover orbit

o SEPS maximum trip time limits

o Payload packaging constraints (end-to-end, side-by-side, three-
dimensional)

o Limits on number of payloads per flight.

1A description of this program as modified for this study is contained in
Volume IV of this report.
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The traffic models also provided data for construction of system opera-

tional profiles showing yearly activity of the onorbit SEPS, Shuttle, and Tugs

required by the mission model. SEPS launches, retrievals, and refuelings are

included in the operational profile along with sortie durations and Shuttle

launch dates to support SEPS sorties.

Based on traffic model analysis, a representative SEPS sortie was synthe-

sized for identification of operations support requirements. A reference

trajectory profile was then developed for this sortie showing event times

(timeline) on the Shuttle, Tug, and SEPS trajectories. This design reference

trajectory is discussed in Section III of this volume and in Volume III.

2.1 REFERENCE MISSION MODEL

The reference mission model (supplied by NASA) used throughout this study

to measure the transport effectiveness of SEPS as part of the STS was the NASA

October 1973 "Best Mix" mission model.2 This model was developed by NASA by

selecting from alternate payload concepts those payload configurations which

produced the least total cost for payload development and procurement plus

transportation cost when the STS consisted of Shuttle and Tug without SEPS.

This payload cost versus transportation cost trade resulted in a "best mix" of

current reusable, current expendable low-cost expendable, and intermediate

payload designs which was optimized for Shuttle-Tug capability and as such is

biased against showing the true SEPS potential. By the ground rules in this

study, SEPS cost effectiveness considers only STS operational costs. No

credit is taken for potentially lower payload cost. One example of the way

the "best mix" analysis affected definition of payloads from geosynchronous

orbit is that it is difficult and expensive for Tug to complete round trip

missions with low cost reusable payloads, usually requiring separate delivery

and separate retrieval flights thus requiring two Shuttle launchs. SEPS can

deliver/retrieve these payloads with just one Shuttle-Tug launch and thereby

save a Shuttle flight. Since these payloads have high transportation costs,

they were all but eliminated from the reference mission model in NASA's "best

MSFC TMX-64751, Rev. 2, "The October, 1973 Space Shuttle Traffic Model,"
January 1974.
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mix" optimization. The use of this reference model and the limitation of cost

effectiveness quantitative numbers to STS operational cost savings only, does

not present a true picture of SEPS cost effectiveness nor of its real value to

NASA's overall program plan for the 1981-1991 years.

The mission model2 and.Space Shuttle Payload Description data books3

specify launch environment, communication, power requirements, and deployment

pointing accuracies for the payloads in addition to launch schedule, size and

weight, and orbital parameters. Information is also supplied about the compat-

ibility of a payload with other payloads for packaging on the same flight.

Sequences such as retrieving a payload, refurbishing a payload, and launching

the same payload for a second mission cycle are identified.

Data pertinent to the traffic model analysis are shown in Tables 2-1 and

2-2. Table 2-1 lists the NASA payload designation, payload dimensions, up and

down weights, and orbital parameters (delta velocity above Shuttle parking

orbit in the case of escape payloads). Payload compatibility restrictions and

special delivery requirements are noted where they apply. Retrieval payloads

are identified by an R following the payload designation. Payload ID numbers

were serially assigned by the WHATIF program for convenient identification of

the payloads. Table 2-2 is the launch schedule for the payloads in Table 2-1

during the 11 years analyzed in this study, 1981 through 1991.

There are 864 missions in the 11 years of the mission model. Total

number of missions in each year are shown at the end of Table 2-2 (note that

several payloads included in Table 2-1 are not actually scheduled in the 1981-

1991 period). Payloads planned for launch on expendable launch vehicles in

1981 and 1982 are not included in this mission model except for two plantary

missions. Department of Defense payloads are excluded by the study guidelines

and therefore are not considered in this study.

3MSFC, "Summarized Payload Descriptions - Automated Payloads," and "Payload
Descriptions, Vol. 1 - Automated PayZoads," July 1974.
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Table 2-1. PAYLOAD CHARACTERISTICS
UP DN PL PL PL

ID NASA NO DIAM-FT LGTH-FT WT-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH
(Av-FPS)

I AST-IA 296 12*2 650* 0 297. 2970 28*5 CR EXPLORER * LOW kANT m

H ORBIT

2 AST-IA R 2*6 12.2 61. 297 297o 297. 28.5 CR EAPLORER - LOW EART
n ORBIT m

3 AST-18 2*6 12*2 6S0. %. 19323. 19323. 28.5 CR EXPLORER - SYNC- *

4 AsT-B8 R 206 12.2 Qq 6q4. 19323. 19323. 280b Cn LXPLONEN - SYNC-

S AST*3 11.6 139I 4282. Us 270. 270. 28z, LCR SOLAR MAX SATLLLITL S

6 AST-3 R 11.6 13.1 0.* 4q1f6. 
2
74u 270. 28.5 LCR SOLAR MAX SATLLLITE .

7 AST*- 
9
.0 I18 6#6649. . 25,. 25.s 28,b CR HEAU C

8 AST-% R 900 181 0 606q. 20 2 50 286B CR MEAO C

9 AST-S 14*4 1£75 17434. go0 200. 2O. 2685 CR MEAD 0 AND E

0I ASTS5 R I4Q 17*S %oi 1721q. 200. 200. 28,5 CR MEAO D AND I

11 AST-5V i4.0 50 3500. 
3
5j@, 200. 2U00 28,5 ANOTHER NO. 11 PLD CR HEA0 0 AND E RLVI E

SHUTTLE LAUNCH ONLY T

12 AST*6 12to 36*3 20161* Of 3f0* 340g 28,5 CR'LARGE SPACE TELLSCO

13 AST"6 R 1210 36*3 u* 2i087. 3qO4 34O* 28.5 CR-LARGE SPACE TELEScO
PE

I4 AST*6V 14.U 5*0 3500. 350. 3o40 34'(. 28.5 ANOTHER NO.13 PLD CR LARGE SPAeE TELESCO
SHUTTLE LAUNCH ONLY PL REVILIT

15 AST*7 IS*O 58S5 27j034. U. 1990 190. 28.5 CR'LARGE SOLAR ObSLRVA
TORY

16 AsT*7 R 15s0 58.5 0* 26912. 190* 190o 28,5 CR LARGE SOLAR ObSENVA
IONY

17 AST-7V 149J 5* 3SUO* 
3 SUi. 190. 190. 285S ANOTHER NO. 17 PLD

SHUTTLE LAUNCH ONLY

I8 AsT-8 3090 2Su* 2786. 4, 386q6. 38646* 2865 CR LARGe RADIO 0
8
5+nVA

TONY

c 19 AST-8 R IUU 25*U 0. 2 64
qu 386q6. 386q6. 28.5 CR LARGE RADIO OBSENVA

FURT

W 20 AST8SV 104o 5.U 38uu 30Us* 38646. 38646. 28*5 ANOTHER NO. 20 PLD CR LARGE RADIO OBSERVA
SHUTTLE LAUNCH ONLY TORY REVISIT

21 AST-9A £4*0 17.5 17434. .j 270. 270. 28.5 CR" FOCUSING X RAY TEL
-4SCOPE IMISSI

22 AST-9A R 140o 17*5 0* 17214. 270* 270, 28,5 CR FOCUSING A RAY TEL
' ESCOPE MIlSSI

23 AST9AV 1o0 5o 350. 35j. 270 270 28.5 ANOTHER NO. 23 PL CR - UI RARLV
SHUTTLE LAUNCH ONLY U

24 AST-98 £4.O 53.* 24136. U. 270. 276. 28.5 CR FOCUSING A-RAY TELE

SCOPE (MISSI "-

-- UNCLASSIFIEOD-



Table 2-1. PAYLOAD CHARACTERISTICS (Continued)
UP ON PL PL PL z

ID NASA NO DIAM-FT LGTH-FT WT-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH

(Lv-FPS)

25 AST-B R 14*5 53*U U* 23872. 270. 270. 28.5 CR FOCUSING -MIAY TLL

SCOPE IMISSIO .
26 AST-9BV 1400 5*0 3500* 3504. 270. 270g. 285 ANOTHER NO. 26 PLD CRFOCUSING 1-HAY -HLV

SHUTTLE LAUNCH ONLY i m
27 PHY-IA 9*0 13.3 5588 U,. 1900. 190. 90o, CR EXPLORE C UPPEN AT

MOSrMENE
28 PHY-IA R '*0 13*3 0 1046 1900* 140. 9094 CR EXPLOREN * UPPEN AT

MOSP NMER -29 PHY-1B 5*0 12,8 853. 3. 200O00. u00 28,5 CR SXPLOHEN - MEDIUM A 5
LTITUDE

30 PMY-IB R 5.0 12*8 0* 898. 2J000. 10o00 28.5 CR EXPLORE - MEUIUM A
L'ItUDE - 031 PNY-IC 601 10*9 1226. y (4q373. *J LCE EXPLOEN - HIgH ALT

ITUOL32 PHY-2A 12t5 13*6 25q uS. 500. 500. 9Ue* LCE GRAVITY/RELATIVITY

SAr. - MISSIu33 PHY*28 9,3 12.0 1373. bo 2 2 2 1 8
.) * LCE GRAVITYIRELATIVITY

SAT. - MISSIO
39 PHY-3A 70 158 3846. 4. 69000 69(0, 55,u CR -NVIRONMENTAL PENTU

RBATION SAT I
35 PMY-3A R 7*0 158 * 3688. 690 * 6900 *  550 CR'ENVIRONMENTAL PERTU

NhATION AT 'i
36 PmY-3B 10.0 17.3 98q95 U. 6900. 6900. 55u CRLENVIRONENT PERTUBA

TION SAT. - M
37 PHY-3B R log 1573 0* 929w. 6900. 6900. 55.q CR-ENVIRONMENT PERTUdA

S ) TON SAT. - n
38 PHY-q 1090 10S5 635* U. 28946.) o CE HELIOCENTRIC AND IN

TERSTELLAR 57
39 PHY-5 Iq0 43.5 46768. 4u 200. 200. 285 CR COSMIC RAY LAB

40 PHYPI R 140 93*5 O* 31999. 2o00 2Q0. 28,5 CH COSMIC HAY LA"

41 PHY-SV 14.0 5*0 3500* 
3 6

0o. 200s 200. 28,5 ANOTHER NO. 41 PLD CR COSMIC RAY LAS REVI
SHUTTLE LAUNCH ONLY S I

452 PL-7 11457 23*5 106440. . (2157) LCE MARS SURFACE SAMPLE
RETURN

43 PL-8 1*7 51.5 164190 U* 125 600 * LCE AARS SAIELLITE SAMP
LL RETURA IPA

%44 P410 84 .1*5 2772. 0 13869.) U LCE INNERPLANETARY FULL
' OWoON

45 PL-11 14,7 19*4 13485. .u* 1228.) LCE VENUS RADAR MAPPEN

96 PL-12 19,7 17*3 20617* . (12661.) e LCE VENUS BUOYANT STATI

ON
q47 PL13 I4q7 34.9 84598. us 12000.) LCE MERCURY ORBITER

48 PL'Iq 1497 25.U 6129. u* (12560.) .u LCE VENUS LARGE LANDEN

*-UNCLASSIFIEDO
O



Table 2-1. PAYLOAD CHARACTERISTICS (Continued)

UP ON PL PL PL z

ID NASA NO DIAM-FT LGTH-FT WT-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH

q9 PL-I7 IO loss 16* o 27741*. ) . CE PIONEER SATURN PRUB m'4 L. 0

50 PL-I8 10.0 10*S 1l3q6. . (27641) ,4 CEPIONEER SATURN / UN

ANUS FLYBY (U I

5S PL-19 14t7 25*0 6888. .. (152790) , LCE MARINER'JUPITER ORDB
S / ITER

52 PL'-20 10.0 IO.S 1169, Us (2s94 0 C PIONEER JUPITER PRO

53 PL'21 14.7 39*0 9988. U0 2 528 Uo LCE MARINER SATURN ONBI

TER

54 PL*22 15,0 25.0 2137. 0. 30847.) d CE MARINER URANUS PROB
/( ) NEPTUN PL

SS PL-23 I147 48,3 3579t5 0. 11827. ) CE JUPITER SATELLITE 0
RITER/LAND E

56 Phb26 1.7 19.9 4978. g. 16498* u LCE'COMET ENCKE'RLNDELV
OiS

57 PL'27 12t2 135 2079* 0. 12969. qu LCE COMET HALLEY FLYBY

58 PL28 14.7 20.8 q4583* 0. 13416. ) LCE ASTEROIV RENDLZVOUS

IVESTA)

59 LUN- 7.8 1i02 2475. u0 11033.) U LCE AUTOMATED LUNAR ORB
- ItE-

60 LUN-3 1C.It 24*0 8700 ( 33 CE AUTOMATED LUNAR NOV

61 LUN-4 147 19l1 4633. 1033. to LCE-HALO SATo

62 LVN- Io0 24oU IIS6U0 0. 03 10330 U CE LUNAR SAMPLE RETURN

63 LS-1 2,2 
1
3.U 683. Us 300. 300* 28,5 PLD NO. 64 LCR LIFE SCIENCES MODUL

64 LS'I R 292 1300 0. 656. 300. 300. 28,s PLD NO. 63 LCR LIFE SCIENCES MOUUL

L

65 EO*3A 1092 360g 8630 Us 300* 300. 990 LCR-EARTH OBSERVATION S

66 EO'3A R 10*2 360 0. 6213. 3U00 300. 9
9 9u LCR EARTH OBSRVATION 5

ATELLITE - iMl

SHUTTLE LAUNCH ONLY AtELLITE - MI

68 EO03C 10l2 36.0 8630. U. 300. 300. 
9 9

ou LCR EARTH OBSERVATION S

7269 EO3C R 1092 36w 0* 62130 3jO, 300* 999 LCR EARTH OBSERVATION 5

ATELLITE - MI
70 EO3V IO u 3 30. 000 300 99 ANFOTHER NO. 0 PLD. LcR EARTH OBSRVATION SSHUTTLE LAUNCH ONLY ATELLIT - Mi

71 EO'3C i0tZ 36,U 86300 uo 30U 3UO, 9910 LCREARTH OBSERVATION S

AIELLITE - MI -

72 EO'3C R 10,2 36. 0. 6213. 3g00 3.00 99qg LCR EARTH ObSERVATION SATELLITE - Ml F-

*qUNCLASS3IFI3C0 .



Table 2-1. PAYLOAD CHARACTERISTICS (Continued)

UP ON PL PL PL

ID NASA NO DIAM-FT LGTH-FT WT-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH

73 EO3CV 19i0 S0 35UU. 3SUb, 300 3U0. 99u ANOTHER NO. 73 PLD LCR EARTH OBSERVATION 5
SHUTTLE LAUNCH ONLY

ATELLITE - M1 0
74 EC-3D 1092 36*0 8630e Go 300v 3000 28,5 LCR'EARTH OBSERVATION S C*

ATELLITE'- MI -
75 EO'30 R 102 36*0 0. 6213. 300. 300. 2685 LCR EARTH OBSERVATION S

AtELLITE- N "
76 EO-'A 7*4 11*0 3085* us 19323* 19323 CR SEOS - f ANU O

77 Eoq4A R 7.4 41 * do 2996. 19323. 19323. v CR SEOS R AND 0

78 EOo-B 794 11.0 3085. Qo 19323. 19323. O CR SEOS- OPERATIONAL z5

79 EO48 R 74q I10 0* 2996. 19323. 19323s 0 CR SEOS - OPERATIONAL

80 EO-SA q47 9*7 676* Q~ 19323o 19323.9 9 LCL SPECIAL PURPOSE SAT

ELLITE - SYNC

81 EO-SA R 4q
8  

9*7 0* 670. 19323s 19323. oU LCR SPECIAL PURPOSE SAT
LLLITE * SYNC

82 O's6B '#7 9.7 676. a. 3000. 300. 9090 LCE-SPECIAL PUNPOSE SAT
LLLITE - SYNC

83 EO-SB R 'e8 9*7 0* 6
7
. 3000. 300 90.0 LCR'SPECIAL PURPOSE SAT

ELLITE - SYNC

1 84 EO-SC q47 9.7 676* U* 2800 280. 90.~ LCE'SPECIAL PURPOSE SAT
00 ELLITE SYNC

85 EO-SC R 48 97 0. 670 280 280*. 28. 90,0 LCR SPECIAL PUNPOSE SAT
LLITE - SYNC

86 EO-SD 497 9*7 676* . 4o00* 4o00 
9
0ow LCE SPECIAL PURPOSE SAT

ELLITE - SYNC -

87 EO'SD R 4.8 9*7 0* 67U. 400 400 90oU LCR SPECIAL PURPOSE SAT
LLLITE - SYNC -

88 EO'SE 497 9*7 676. us 19323# 19323. *f LCE SPECIAL PURPOSE SAT

LLLITE - POLA
89 LO-SE R di8 9*7 0* 670* 19323* 19323o .U LCRSPECIAL PORPOSE SAT

LLLITE - POLA

90 tO-6 8,0 15*3 1717. Us 790. 790. 1029u cRlTINOS N-P

94 E-6 R 8t0 1503 0. 16165 79 s 79@0 i2q, CR TINOS N-P

0 92 EO-7 792 l09 1U77. 0. 19323. 19323s. . LCE SYNCHRONOUS METEONO

LOGICAL SAT.

93 EOP-3 1147 18.3 3030. a. 325* 325s 90t LCE'SEASAT-6

94 EoP-4 IU.
9  

1298 3792. u. 1620U. 16200. 9. w LCE OEOPAUSL

-t 95 EOPU5 1497 30.2 10236. u* lu8 108. 9 ,Q LCE GRAVITY GRADIOMETLR

96 EOP*6A I96 06 225. u. 350 350. 2865 CE MINI - LAGEOS - 26.

-eUNCLASSlrFIEDO O



Table 2-1. PAYLOAD CHARACTERISTICS (Continued)

UP ON PL PL PL

ID NASA NO DIAM-FT LGTH-FT Wr-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH

97 EOP'66 8.6 i.6 2s5. u. 35s 350. 55 S CE MINI - LAtcOS - bb

98 EO P* 6 C 1*6 8.6 s225 3) 3S0. 9W C MIN - LAGELS 9u

99 EOP*- 6.2 Ig 1209o u. 286* 286. 94po LCR VECTOR MAGNETOMETL K

SATELLITE
I00 EOP-8 R 6*2 10o4 0* a0e.. 216o 86. 

9
0u LCR 9ECTOR RANETOMETEN

SATELLI E . .

TLLLITL a
102 1OP-9 R 5. 8IdeZ u 885 80o0. 540o 2*io LCR MAGNETIC MONITOR SA nI

TLLLITE
103 NN/0-2C 6.3 1799 974 I. 19323o 19323o CR'TRACKIN6 AND DATA R

ELAY SATILLII

104 NNeD2ZCR 6i3 17.9 0o 692. j9323e .19323* . 0 CR'TRACKING AND DATA R.

ELAY SATELLi.
0ls ST- 8 mIq 31.5 1d200o ue 270. 27lo 2le5 CA-LONG DURATION LEPUS

URE FACILITY

106 STI R IO0 35*5 0. It2Ue 270o 270* 28,5 CR LONG DURATION EXPOS

URE FACILITY

107 NN/Q-I 893 122. q4498 .o 19323 19323. CR-INTELSAT

i0o N/DtO R 8.3 1822 . q43q7o 19323o 19323 oi CR INTELSAT

109 NN/DO2A 76 I8.8 II7o UMe 19323 19323. LCE U.S. DONCOMSAT (M

SSION A)

110 N,/0-2B 8*3 122 q496* .61 19323. 189323. * CR- UeS DOGOMMSAT..IMI
5510N SI

838 NN/D2BR ,3 t22 0. '37. 89333. 89323. C CR U.S. DQMSOMSAT t(Ii
SSION B

I'8' NN/D*3 .set 1l1q 20q. be 19323 19323. ' LCR DISASTER NANNING SA

ILLLITC

183 NN/D,3 R 82 184 0o 2
UI8

7  89323. 19323o *4 LCRDISkASER *ANNING $A
TELLITE

114 NN/pO
q  

16#3 182S 8i22 b. 19323o 89323* o LCE TRAFFIC MANAGLMENT

is NN/D*4 R t1S 836 s 8423* 19323. 19323 eu LCR TRAFFIC NANAQLtNhT

£86 NN/DOS Sel 12.2 92. 0o 893233 19323a 0 CR FONEIGN CQNMAT

III NN/o5 A So$ 82.2 0* 838. 19323o 19323. ,w CR FOREIGN COMSAT

It8 NN/D0
I

6 Il86 83*8 38718. . 19323 819323 u LCE COMMUNCATIONS N AND

0 SATELLITE
il9 NN/De 8092 2*4 2025e w* 920. 920. a1 3 LCR ENVIRON0ENTAL MONIT

DAING SAIELLi

820 NI/D* R It 
2  I2, 0. 19346. 920. 920. Og39 LCR LtNVIRONMENTAL RONIT

OING SATELLI 8.a

*.UNCLASSIFIOD*'



Table 2-1. PAYLOAD CHARACTERISTICS (Continued)

UP DN PL PL PL U
ID NASA NO DIAM-FT LGTH-FT WT-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH 0

121 NN/D-9 6.0 10.3 807. us 19323. 19323. .o CR FOREIGN SYNCHRONUS N
METLOROGICAL 

122 NN/D-9 R 6.0 I0Q3 0. 765. 19323* 19323s oU CR FOREIGN SYNCHRONOUS t
METEOROICA -

123 NN/D-10 690 10*3 807.* U 19323 19323. *4 CR GEOSYNCHROUS OPERAT N
IONAL MEItEO9AO

124 NN/D*IOR 690 10.3 0* 765. 19323. 19323. bo CR GEOSYNCHROUS OPERAT 0I
IONAL eETEORO m

25S NN/D-I 10t2 36.0 8630* U* 30O. 300. 97.9 LCR EARTH RESOURCES SAT

S- LEO
126 NN/DI5R lut2 36*0 0. 6213. 300o 3U00 97.0 LCR EARTH RESOUNCES SAT

S LEO
127 NN/DI12 74 ll*0 3085.* . 19323. 19323* *0 CR LARTH RESOURCELSSYN

128 NN/D-12R 7$4 Ile0 0* 2996. 19323. 19323. 9 o CREARTH RESOURCES-SYN

C
129 NN/D-13 7, 150 3085* 0. 19323. 19323. qu CR FOREIGN SE0

130 NN/DIl3R 794 1o1 0Go 2996. 19323. 19323. o CN FOREIGN SEOS

131 NN/D£' 12.7 13*7 5J62. U. 2e0. 2UOg 
9
84u LCR GLOBAL EARTH AND OC

EAN MONITOR S
132 NN/D-14R 127 13.7 0* 4745. 200. 20g. 

9 8 9u LCR GLOBAL EARTH AND OC

EAN MONIIOR S
133 ASTIOA 190o 5Oau 318S57 3Q25. 162. 162. 28,5 SORTIE STELCAR ASTRoe

- DAY, P
139 ASTID8

'  
1tO0 'qSo 28526. 26894. 162. 162. 28*5 SORTIE STELLAR ASTReo

I DAY, P
135 ASTIOC 1*0O 3U*0 3U08£ 29179. 162. 162. 28.5 SORTIE STELLAR ASTR*.

7 DAY, P
136 ASID0073 140 47.0 27287. 25655. 162. 162o 28.5 SORTIE STELLAR ASTR*.

7 DAY, P
137 ASIOD79 1t40 47o0 27287. 25655. 120* 120. 

9
0qw SORTiE STELLAR ASTRo.

? DAY, P
138 ASID033 1940 5q*0 402d0U 

3
u

5 7
u. 162. 162. 28.5 SORTIE STELLAR ASTRo* 3

U DAY, P
139 ASIOD39 1*40 SqY qoz200o 

3
w

5 7
u* 120 120. 

9
0. SORTIE STELLAR ASTR.. 3

U DAY, P
140 ASTIOE 14O0 4oou 25460. 23828. 162 162. 2895 SORTIE STELLAR ASTR.,

7 DAY, P
141 4sTIOF 140 40*0 55089. 31387. 162. 162o 28.5 SORTIE STELLAR #STR.,

7 DAY, P
142 ASTIOG 514*0 1*80 13J59 11373. 162. 162. 28.5 SORTIE STELLAR ASTR,

7 DAY, P
143 ASTION 1940 52.u 41582. 

3 2
00u. 162. 162. 28.5 SORIIE STELLAR ASTRo,

7 DAY, P
144 ASTIGI It90 54iu 29168o 19538. 162. 162. 28.5 SORTIE STELLAR ASTR*,

SODAY, P

-- UNCLASSIFIED-- -



Table 2-1. PAYLOAD CHARACTERISTICS (Continued)

UP ON PL PL -PL U
ID NASA NO DIAM-FT LGTH-FT WT-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH

14S ASTIOJ 14O0 4SeO 23519* 21687. 162o 162. 28S5 SORTIE STELLAR ASTR,

7 DAY, PIq6 AsTIOK7 14*t0 'B.4 29637. 2
8
0S* 162 162. 28,5 SORTIE STELLAR ASTR.,

7 DAY, PIq4 ASTI0K3 1149 0 SS 142702. 3119. 162 8162. 2856 SORTIE STELLAR ASTR., 3
0 DAY, P148 ASTIOL 114t 57.# 142U 3189,. 420 162. .28.5 SORTIE STELLAR ASTR. ,
7 DAY, P814 ASTIOC 14.0 3700 02116, 3

u43%. 162e 1.2s SS SORTIE STELLAR ASIR.,
7 DAY, P 0150 ASTI8i 1qO0 S5*0 24771o 2J39. 280. 210* 2805 SORTIE SOLAR PHYSICS, I
7 DAY, P

6SI ASl8 7 1140 *oeo 3.298 28566. 210. 210. 28S SORIE SOLAR PHYSICS,
OAT, P

853 ASTIC3 l10 2470 2433. 3178. 2j10 210. 28.5 SORtIE SOLAR PHYSICS 3U DAY, P
IS3 ASTiIC I4,O 25*0 23871. 312239 20* 20*. 285 SORTIE SOLAR PHYSICS.

7 DAY, P
IS AST1D3 1140 20o 2367819 2702194 210 210, 28*5 SORTIE SOLAR PHYSICS, 3SOAY, P-

1SS ASTIED3 84tO0 320 3680. 29272 2 220, 280, 2895 SORTIE SOLAR PHYSICS,SODAY, 
P

IS AsTI3E7 11#0 3Sm 37U8qo 297205 210a 2100 28sS SORTIE SOLAR PYSICS 3

f - AO A T , P15? 4STiE3 1400 520 1612* 3200we 2109 210* 28.5 SO-T#E SOLA- PHY5*CS s 3
U DAY. P

8S9 PHY6C I14*0 3.550 312267 282423 120. 120* 2S5S SORIE HIGH ENERGY. 7

IS9 RHY6C 1*0o 30 225, 6* 203 838 120 120* SORTIE HIGH ENERGY, 7
- DAY, P1 60 PY60 q140 27.*. 20720* 888380 820. 120. 28,5 SORtiE HIGH ENERGY. 7
DAY, P

848 PHY6E3 8440 5*.Q 39288. 34598* 820. 820. 28.5 SORTIE HIGH ENERGY, 30
OAY, P

162 PNY7A 11q0 64U0 2
9

02* 28238. 200 200. 285S SORTIE ATnMO SPACL PHYS
ICS 7 DAYs L*P

163 PHY78 140I 60*0 299U2 28238. 2o00 200.* 55. SORTIE ATMOs SPACE PHYS
ICS, 7 DAY, L+P164 PNYtC I14o 6*oU 29UU2. 28238@ 180O 180o 9ou. SORTIE ATMO. SPACE PHYS
ICS, 7 OAY. L#P165 LS2A7 140Q 58* 37532. 3

185 150ISO* 1O 28.5 SORTIL LIFE SCIENCEs 7

DAY, L166 LS2A3 1400 6T.S 37532. 3u85. 150. 150. 285S SORTIE LIFE SCIENCE, 3U
UAY L167 SY2A I140 60,0 25296. 24532. 29O. 200. 55SS. SORTIE SORTIE SPACE TLL

H, 7 DAY* L*P166 ST2B 1*0 6jo0 2S2969 25S32. 2,0s 200* Sow SORTIL SPACE TECH., 7
UAY. L*P

*"UNCLASSIFIEDO* 0



Table 2-1. PAYLOAD CHARACTERISTICS (Concluded)

UP ON PL PL PL

ID NASA NO DIAM-FT LGTH-FT WT-LBS WT-LBS APO-NM PER-NM INCL-DEG CANNOT BE LAUNCHED WITH

169 ST2C I3I0#* 6 .4 25296. 24532. 2Jo. 2ug. SSo. SORTIE SPACL TECH.. 7 m

UAY, L.P 10

170 SY2D 14.0 6u*d 25296. 24532. 2jO. 200. 55., SORTIE SPACL TECHM* 7 co
DAY, LP

171 0AIA75 I140 6U.0 27002. 26138. 180 180ISO. 55. SORTIE OFFICE OF APPLIC

*. 7 DA. L;P

17Z 0AIA79 14.0 6u.0 27002. 26138. 160. 160. 90, SORTIE OFFICE OF APPLIC

*, 7 DAY, L+P "

173 018175 140 60U 25432* 2N538. 180. 180, SSu SORTIE OFFICE OF APPLIC
** 7 DAf, L*P

174 0AIB79 140O 6U0* 2542. 24538* 160. 160. 90.g SORTIE OFFICE OF APPLIC

*, 7 DAY, L*P

175 SPIA 1q.0 6u.u 26084. 25
3
2u. 180. 180. 28,5 SORTIE OFFICE OF APPLIC

*. 7 DAY, LoP

176 NDItA73 14,0 60.0 26502* 25638. 180* 180 28,5 SORTIE EARTH OBS., 7 DA
S, L*P

77 NDIA7
9  

1Q.0 6U*0 265U2 25638. 180, 180. 9~U SORTIE EARTH 085, 7 VA

T, L*P

378 MN0178 4B 0 45*0 26798* 25166. 162. 162 28.5 SORTIE ASTMe 7 DAY, P

N) 179 NNDI7C 4190 60.0 26982. 25718, 2ZO0 200* 28.5 SORTIE GPL 1, 7 DAYT L*

S80 NNDI7D 14*0 6j.j 262631 25q97. Z20. 2U0. 28,5 SORTIE GPL 2, 7 DAYt L*

181 SPIB 1I* 5*0 6171* 5239* 160 160* 28.5 SORTIE OFFICE OF APPLIC

•* .7 DAY, P

182 SPIC 1*40 S*G 51213 4I89. 160. 160. 28.5 SORTIE OFFICE OF APPLIC
* 7 OAT, P

183 NNDI6A I4No 5* 6171. 5239. 160. 160. 28.5 SORTIE SPACE MFG-* 7 DA
Yt P

84q NNDI6B t101 Se0 5121* 4184. 160. 160. 285 SORTIE SPACE MFG** 7 DA
Oi P

*-UNCLASSIFIED-- 0



TR-1370

Table 2-2. PAYLOAD SCHEDULE

ID NASA NO YEAR
81 82 83 89 85 86 87 88 89 9W 91

I AST-IA I I a a I I I I I a I

2 AST-IA R 21 0 U U U I I
3 ASTIB 0 u I u I A J 0 0 u
q ASTl6 R 0 0 ~ u I u v u 0
S AST-3 I I I

6 AST-3 R 1 & I a u 1 1 w
7 AST'4 0 U0 U U I u 4 0 J)
8 AST' R 4 J 40 ii ;A . C
9 AST*5 4 a 3 u 1 I o 0 1

IG AST-S R Q U wa u o I I

II AST-SV Q 3 a i IU 1 2 0 U
12 AST-6 w 0 u i i 0
13 AST-6 R i o 0 c f a o 1 w
14 AST-6V I a 0 1 1 i a Q I I I
IS AST*7 0 u U i 4I 4U " U i lU

16 AST'7 R 0 o 0 0 & IQ 4 O U
17 AST-7V Q i I I I 1 1 a
18 ASTP8 . 0 1 . a e 0 0 I
19 AST-8 R 0 0 0 t. G c a Q 4
20 AST8 V 40 Sii r i I I 0 i

21 AST*19A o I u 0 |
22 AST-9A R 0 Q u Q a u I O O 0
23 AST-9AV 0 t 3 I 9 a C
24 AST-98 0 U 1 0 0
2S AST"98 R v Q ii U w u ti 4 0 1

26 AST*98V 0 0 0) u ii 1 1
27 PHY-IA o0 I u 1
28 PHY"IA8 a O a w u I I
29 PmY-IB G u i u 1
30 PHY"IB R 0 w i n I i

31 PHY-C u | I 0 o

32 PHY-2A 0 i- u U O 0
33 PHY-2B 0 0 u I I 0 0 I
3q PHY43A 1 i 1 a 0i j w o U
35 PHY*3A R u uC 8 a O 0

36 PHYM3B 4 ii u 1 U I
37 PHY-38 R 0 (u m w w 4 I
38 PHY- 4 u u ' 1 0 0
39 PHY*5 4 0 u o U G 0 &
410 PHY*S R 0 w 6 u u O u

2-13



TR-1370

Table 2-2. PAYLOAD SCHEDULE (Continued)

ID NASA NO YEAR
81 82 83 84 85 86 87 88 89 90 91

41 PHY-SV 0 0 U u U 1 I 1

42 PL- 7  0 0 2 U Q 0( U 0 U

43 PL-8 40 U u u a 4 1 
44 PL-I0 0 1 ;j U I a 0 0

95 PL-) a o 2 0 0 a U 0 0 0

47 PL-13 0 oQ a 0 2 4 0 0 o
'8 PL-19 0 0 Q u 0 a 4 0 0
49 PL-17  a0 0 a 4 U 4 G 4 0 a
50 PL-18 1 0 aU Q 7 4 a 0w

51 PLl-19 2 0 u 4 a 0 0 0 a

52 PL-20 0 0 a 2 a 4 a 0 0
53 PL-21 0 0 u 2 0 4 0 0 Ca

5q PLZ22 0 2 U U 4 0 Q 4

55 PL-23 0 0 4 0 0 1a I

56 PL-26 0 0 u 4) v (A U 0 0 0

57 PLwZ7 0 0 u I Q 4 0 0 ta
58 PLi28 0 0 4 u # 2 o W 0 
59 LUN-2 a 0 c a I a 4 0 0
60 LUN*' 0 0 a 0U % 1 0 0

61 LUNv' a i Q U a1 a
62 LUN'S 0 ( u 0 4o I

63 LS1 2 2 2 2 2 2 2 2 2 2 2
6q LS-I R 2 2 2 2 2 2 2 2 2 2 2
65 EOw3A U 0 1 ii a 0 I 0 0 a

66 Eg*3A 8 a a U ( e0 I U Q 0 0 1
67 Eg3AV 0 0o o I o 4 4 0 1 u
68 Eeo38 0 0 1 a1 0
69 Eo-3B R 0 a 1 4 U I u U 0 0
70 EO-38V 0 1 U 4) i c U 0 0 0

71 EO-3C 0 a 4) 4 0 c, I

72 Eo-3C a 0 (h a I U 6 0 1 0 U

73 Eo-3CV 0 0 1 i U £ i 0 a(-
79 EO-30 p0 0 a. 0 0 0 4
75 EO,30 R 0 4 40 ; 0 0 0 Z

76 EO"4A a 0 1 O I 0 4 0 0 u

77 EO*-A R 0 0 0 Q a '4 a 0
78 EOQB6 0 0 4 4 0 2 2 0 2

79 EO*B R 0 0 4 Q u 4 f 0 a U
80 EO-SA 0 u 0

2-14



TR-1370

Table 2-2. PAYLOAD SCHEDULE (Continued)

JD NASA NO YEAR
81 82 83 84 85 86 87 88 89 90 91

81 EO-SA R 0 & u 0 A 4 0 U

82 EO-5B 0 0 w ( U a 0 0 t
83 EO-S8 R a 0 i r C 0 0
89 Eo-bC 0o o a o 0 i 0 1 
85 EO*SC R 0 0 u % f u 0

86 EO-50 0 0 4 u I u 0 1 0 0 I

87 EO- SD 0 U C ii w U c 0 a
88 EO-S , 0 a ~ 4I I a a
89 E0*E R 0 0 U & 0 0o 0 a
90 EOi 4 0 u u I w 0 0

91 E0-6 R 0 0 1 I u C 0 4

92 EO-7 0 0 u U 1 U 0 u
93 EOP-3 0 0 u 0
914 EOP'4 0 0 0 0
95 EOP-S Q 0 u & a ; 0 0

96 EOPO6A 0 0 u 4. 2 i u w 0 w

97 EOP*6B 0 0 4 :2 0 0 0 0
98 EOPw6C a 0 2 C 4 a 0 3
99 EOP-8 0 0 4 3 . 4 0 3 C

100 EOP-8 R 0 0 3 u 6 3 u Q 0

101 EOP' I 0 I 0 0 I

102 EOPw9 R 0 - I &a & & u 0
103 NN/D-2C G 0 3 u U a 4 3 f 0
10q NN/O02CR 0 a C a 4 C 0 a
OS ST-i 0 I & I u I C I

106 5T"I R I i i i 1 i I 6

107 NN/O"I 0 0 2 3 .2 2 C U 2 3 2
108 NN/D i A 0 C U Q ii 0 a a 2 3 C
109 NN/D0ZA 2 2 1 (" 0 L U 0

IIO NN/D'2B o 0 U a a 2 2 3 2 2 &

III NN/D-28R 0 C U : O 0 0 U

112 NN/0D3 U 4 U C C I U

113 NN/D03 t 0 0 0U t I 0 0
314 NN/D'1 2 1 1 3 U I I 1
135 NN/D-14 R 0 0U a u 0 U 0 0 a

116 NN/D-5 I I 1- i I I I I 1

117 NN/DS R 0 a U 3 1 U U L 1 I i
118 NNID-6 0 C u a 1 j 1 I 4
119 NN/D'-8 0 0 u 1 I I a 0 I I
120 NN#D'8 R U U i 3 U I 1 I 3

2-15



TR-1370

Table 2-2. PAYLOAD SCHEDULE (Continued)

ID NASA NO YEAR
81 82 83 8q 85 86 87 88 89 90 91

121 NN/D-9 I I u I U 1 0 I 0

122 NN/D-9 R 0 0 lD I I a 1 G 0
123 NN/D-0 I I I U I U I a a 0
12Q NN/D0-OR o U u a 3 a i u I

125 NN/D-I 0 0 a 1 a a I

126 NN/DaaIR U 0 2 A I I a a |

127 NN/0-12 0 0 U U 0 U 0 2 U 2 U
128 NN/0-IZR 0 0 C u 0 i t 4 0 Ca
129 NN/0"13 0 G I u ID C is 4 2 0 1
130 NN/0I13R o c u D a C U 0 0 U

131 NN/0D'4 0 0 4 u 3 3 j 3 Q 3 0

132 NN/DI9R 0 0 i Q 0 Q j 0 3 0 3
133 ASTIOA I I I1 ; O 0 O 0 0 oC
13Q ASTI4B 0 1 I w u ii 0 0 i
135 ASTICaC 3 0 U 1 1 W a 0

134 ASIUD73 0 0 4 14 O U 0 0 0a

137 AS10079 O 0 Q U I 0 0 0
138 AS10033 0 0 0a 4U a 1 0 0 1

139 AS10039 0 0 u u I u 1 I U

1 q0  ASTIOE 0 0 0 I I U 0 U 0 &

1l1 ASTICF 0 0 0 0 1 I I 0 0 0 0

192 ASTIOG 0 C 00 1 a s 0 0 0
143 AST40H 0 0 (0 u U I w 0 
194 ASVIuI 0 0 a i 1 i I 0 o
195 ASTICJ 0 0 0 c 0 1 Q co I

196 ASTIGK7 0 0 it 0 Q ' a 0 0 Q

147 ASTCK3 a 0 0 a U I I I I
148 ASTIOL 0 0 0 a 0 0 1 U 0 1

147 ASTIIM O 0 a ta u 1 1 0 U
150 ASTIlB 0 I 2 2 1 1 U 0 0 Q

151 ASyIC7 0i 0 2 U U i 0 0

152 ASYIIA I 0 | i U ii 0 
153 ASTIIC3U a 0 0 ii I ; i 4
15i AST1I07 0 0 0 Q (A U 1 t; 0 0 a
155 ASTI1ID3 o 0 D0 i Q I 0 0 0 4

156 ASTIIE7 0 0 C ' t 0 1 2 1 2

157 ASTIIE3 C A u 1 1 I 1

158 PHY6A/B 0 1 1 I £ C a U 0 U
159 PY6 C I i i i I i 1 1
160 PHY60 I 1 1 11
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Table 2-2. PAYLOAD SCHEDULE (Concluded)

ID NASA NO YEAR

81 82 83 8' 85 86 87 88 89 90 91

161 PHY6E 3  0 U u u u I I 1 I I 1

162 PHY7A I I u I I U i I I 
163 PHY78 u U 1 a i I I U I U
164 PHY7C 0 1 2 2 2 2 2 2 2 2
165 LS2A7 2 2 U 3 u t u U U

166 LS2A3 0U 2 2 2 2 2 3 3 3 3

167 ST2A I I 1 1 I ! I I I I
£68 ST2B £ I £ £ I I 1 1 i 1
169 ST2C i I 1 I 1 1
170 STZD I i I I & I 1

171 OAIA7S I 1 U I U I 

172 0AIA79 U 0 U I 1 a 1 I I 0 1
173 OA B75 I I 1 & i i 0 I U G i
174 OAIB79 0 U U 0 1 0 I 0 1 1 U

175 SPIA | £ | | £ | I £ £ I £

176 NO17A73 I I U U U U U U 0 0 0

177 N017A79 U U A 1 £ 1 I A I i
£78 NNDI7B I I A A i 1 I I £ i 1
179 NND|7C I I £ i i I A 1

580 NNDi7tD U U 1 A U I U I 0,

181 SPi8 2 & 6 6 6 6 6 6 6 6 6

182 SPIC 2 6 6 6 6 6 6 6 6 6 6
183 NNDI6A 0 0 .0 2 4 2 4 2 4 2

18q NNDI68 3 4 " 2 4 2 4 2 ' 2

TOTAL 47 53 67 81 8' 93 82 91 89 99 83
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The mission model contains two kinds of payloads: automated payloads

that operate independently of the Shuttle (ID numbers 1 through 132 in Table

2-1) and sortie lab payloads which are dependent on Shuttle and remain in the

cargo bay (ID numbers 133 through 184). The last four of these (181-184) do

not have a preferred orbit and can be launched to any orbit within Shuttle

capability. Automated payloads fall into six mission classes: earth escape

missions which include lunar, planetary, and interplanetary missions, and five

earth orbital mission classes.

The five earth orbital classes are: geosynchronous equatorial missions,

polar and sun synchronous missions at inclinations from 90 to 103 degrees, 55-

degree inclination missions, high energy 28.5 degree missions at or above

geosynchronous altitude, and 28.5 degree missions at low and intermediate

orbital altitudes. The number of each class of mission is shown in Table 2-3.

Table 2-3. MISSION MODEL SUMMARY NUMBER OF MISSIONS 1981-1991

SORTIE MISSIONS 425

AUTOMATED PLD MISSIONS

ESCAPE 45

EARTH ORBIT

GEOSYNCHRONOUS 133

POLAR AND SUN SYNCHRONOUS 97

550 INCLINATION 8

28.50 HIGH ENERGY 9

28.50 LOW AND INTERMEDIATE ORBIT 147

TOTAL EARTH ORBIT MISSIONS 394 394

TOTAL AUTOMATED MISSIONS 439 439

TOTAL MISSIONS IN MODEL 864

In the earth orbit mission classes, 24 polar and sun synchronous missions

are beyond Shuttle-alone capability and require an upper stage or a propulsion

capability integrated into the payload. Six of the 55-degree inclination

missions and 15 of the 28.5-degree low and intermediate orbital missions

require upper stages. The earth orbital mission classes become somewhat

indistinct in traffic models generated by the WHATIF program, particularly on
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missions with upper stages. Where assigning payloads to flights, the WHATIF

program, in order to make maximum use of available cargo bay volume, can

choose payloads in any mission class subject only to the constraints and

restrictions already mentioned. The 28.5-degree low and intermediate orbit

and high energy missions are frequently combined on flights with geosynchronous

missions which also require 28.5-degree Shuttle launches. On combined SEPS-

Tug sorties where SEPS augments Tug performance (because of the Tug plane

change capability at higher altitudes) 55-degree missions are occasionally

combined with 28.5-degree high energy and intermediate orbital missions.

Polar and sun synchronous missions are never assigned to flights with any

other class of missions because of the large plane changes involved. Escape

missions are dedicated flights, each one requiring its own Shuttle and Tug (in

some cases multiple Shuttles and Tugs). Their large energy requirements

prohibit combining them with other escape or earth orbital missions except for

the any-orbit sortie missions which stay with the Shuttle.

2.2 SEPS MISSION ROLES

When used as a transportation stage in conjunction with Shuttle and Tug,

SEPS transport only effectiveness can be indicated by a reduction in Shuttle

flights required to deliver the payloads in the mission mode. Given enough

time, SEPS can deliver any payload or combination of payloads that can be

loaded in the Shuttle cargo bay. Thus, SEPS is able to reduce Shuttle flights

by allowing more payloads per flight than would otherwise be possible and by

eliminating the requirement for tandem Tugs and dual Shuttle launches on high

energy missions. Previous studies4 using an earlier mission model identified

four potential mission roles or classes of missions where SEPS capabilities

resulted in significant Shuttle flight savings. These mission roles were:

planetary missions, polar and sun synchronous missions just beyond Shuttle

capability, orbital taxi missions in geosynchronous orbit, and geosynchronous

delivery and retrieval missions. For the study reference mission model,

effective use of SEPS-Tug sorties combined intermediate orbital delivery,

4Rockwell International Corporation Report SD 72-SA-0132-2-3, "Extended
Definition Feasibility Study for a Solar Electric Propulsion Stage Concept
Definition, " 21 December 1973.
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retreival, transport to and from geosynchronous orbit, and orbital taxi roles.

The following discussion illustrates this point.

ESCAPE MISSIONS

Analysis of planetary missions using SEPS was done only to the extent

necessary to ensure that recommended SEPS configuration characteristics for

earth orbital missions did not compromise planetary ability. The six planetary

missions that are currently planned with SEPS are in the mission model, and the

Shuttle launches required for them are included in the traffic model analysis

results. Two additional planetary SEPS missions in 1981 are planned for

expendable vehicle launch and are not included, but they do not affect Shuttle

flight requirements. Table 2-4 is a summary of launch vehicles required by

the 45 escape missions in the mission model. This table was constructed from

traffic model results using an IUS (expendable transtage) in 1981-1983 and the

30-foot baseline Tug in 1984-1991. Sixty Shuttles are required to launch

these missions. Of the 45 escape missions, 7 are lunar missions, 8 interplan-

etary (heliocentric and so forth) and 30 are planetary.

Table 2-4. ESCAPE MISSIONS, NUMBER OF MISSIONS 1981-1991

1 SHUTTLE/MISSION ORBITAL ASSY. REQ'D-2 SHUTTLES/MISSION SHUTTLE
YEAR IUS IUS-BII IUS IUS-BII IUS-IUS IUS-IUS-BII MISSIONS LAUNCHES

81 2 2 1 5 6

82 1 1 1

83 2 2 4 6

Tug Tug-BII Tug Tug-BII Tug-Tug XTug-BII

84 3 2 5 5

85 2 2 2* 6 10

86 5 1 2 8 10

87 2 2* 4 6

88 1 1 2 2

89 3 3 3

90 1 1* 1* 3 5

91 1 1 1* 1* 4 6

TOTAL 45 60

* Payload too long to fit in cargo bay with Tug

* Expended IUS 1981-1983
* 30' Baseline TUG 1984-1991
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Fifteen of the planetary missions require dual shuttle launches with

assembly of the upper stages and payloads. in Shuttle parking orbit. If SEPS

could be used on these missions to reduce mission AV (V.) to within the capa-

bility of a single upper stage, 15 Shuttle flights could be saved. An exami-

nation of payload dimensions in Table 2-1 shows that the payloads on eight of

these missions are too long to fit the cargo bay with the Tug. An earlier

study by Rockwell International Corporation5 , has shown that of the remaining

seven missions, four are feasible with SEPS (two PL-11 in 1983 and two PL-12

in 1985). Thus, of the 15 potential Shuttle flight savings, 4 are actually

possible with the present payload size definitions. It would be necessary to

expend the SEPS on these four flights. Cost analysis indicates that the cost

of SEPS is about the same as the cost of a Shuttle launch; therefore, there is

no motivation to use SEPS unless the payload and missions are redefined to

exploit the greater allowable payload mass and maneuver capability provided by

SEPS.

POLAR AND SUN SYNCHRONOUS MISSIONS

There are 97 polar and sun synchronous missions in the mission model. A

total of 24 of these are at altitudes above the 500 nautical mile Shuttle

limit in polar and near-polar inclinations. The need for a Tug on these

missions could be eliminated by using SEPS to make the necessary altitude and

plane changes after the Shuttle had delivered the payloads to a suitable

parking orbit within its capability. Fewer Shuttle launches would be required

since the extra room in the cargo bay could be used for additional payloads on

each flight. The highest altitude at which SEPS can operate in low-earth

orbit missions is limited by radiation trapped in the Van Allen belt. This

radiation becomes intense above 1000 nautical miles. To avoid crippling

degradation of the solar arrays, SEPS must operate below this altitude or use

higher cost self-annealing solar cells operated at temperatures that signifi-

cantly reduce efficiency. Nine of the 24 missions are above a 1000-nautical

mile altitude, leaving 15 missions within the range of SEPS operation. Traffic

5Rockwell International Corporation Letter 73MA4936, "Application of SEP Stage
to Planetary Missions," 13 September 1973.
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model results show that 10 of these 15 missions are included on Tug flights

required for delivery of the nine missions above 1000 nautical miles. The

five remaining missions require Tug flight in each of the years 1985, 1986,

and 1987. Since these three flights are in three different years they cannot

be combined to save a Shuttle launch, and the most SEPS can do in this mission

role is save three Tug sorties. Dedicating a SEPS for 3 years to deliver five

payloads and save three Tug sorties at $0.96 million each did not appear to be

cost effective, and this SEPS mission role was dropped from the traffic model

analysis.

The polar and sun synchronous mission role was briefly reevaluated near

the end of this study. There are 73 polar and sun synchronous missions within

the Shuttle's capability. These missions are at orbital inclinations of 90,

97, 98, 99, 102, and 103 degrees. Since the Shuttle essentially has no onorbit

plane-change capability, payloads at different inclinations can not be mixed

on the same flight. If SEPS were used to make the plane changes, these pay-

loads could be more efficiently assigned to flights and fewer Shuttles would

be required. To assess this potential it was assumed that the lowest altitude

for SEPS operation would be 200 nautical miles (this limit is where atmospheric

drag on SEPS is equal to its thrust, and it is somewhere between 200 and 300

nautical miles - the uncertainty is due to large variations in atmospheric

density at these altitudes). It was also assumed that SEPS would be able to

do what was demanded of it by the payload combinations on each Shuttle flight

within reasonable trip times.

Accordingly, the destination orbits for these 73 payloads were redefined

to a common Shuttle parking orbit of 200 nautical miles at a 98-degree inclina-

tion. A traffic model was then generated with the WHATIF program. The result

is shown in Table 2-5 for the years 1982 through 1991. There are no polar

missions in 1981. Without SEPS, 39 Shuttle launches are required; 12 of these

include Tugs for delivery of the 24 payloads above the Shuttle's capability.

Twenty-nine Shuttle flights are required with SEPS, nine of which include

Tugs. The three Tugs saved are those previously mentioned. The total of ten

Shuttle flights saved is an optimistic estimate of SEPS potential in this

2-22



NORTHIIRP SERVICES, INC. TR-1370

Table 2-5. POLAR AND SUN SYNCHRONOUS FLIGHTS

WITHOUT SEPS WITH SEPS

YEAR SHUTTLES TUGS SHUTTLES TUGS SORTIES

1982 1 -- 1 -- 0

1983 5 -- 3 -- 1

1984 4 2 3 2 1

1985 4 1 2 0 2

1986 4 1 3 0 1

1987 4 1 2 0 2

1988 4 1 3 1 1

1989 4 2 4 2 0

1990 5 2 4 2 1

1991 4 2 4 2 0

TOTAL 39 12 29 9 9

mission role since the limits on SEPS trip time and the necessity of launching

and retrieving SEPS are not considered.

A problem largely ignored in this and past traffic modeling exercises is

that of the relative orientation of the line-of-nodes of these orbits. Though

not presently included in the mission model, nodal orientations for these

missions will almost certainly be specified, particularly for the sun synch-

ronous.missions which will have some preferred orientation with respect to the

earth sun line. Even for those missions without specified nodal directions,

precession during the time they are in orbit (which in general will not be the

same for any two payloads) will result in widely separated nodes at retrieval

time. Nodal shifts at low altitudes can easily tax Tug performance capability.

Nodal shifts are possible with SEPS, but trip times become unacceptably long.

While one may occasionally arrange to deliver several payloads on one flight,

retrieval of more than one is unlikely. Thus, delivery and retrieval of

multiple payloads in this class of missions will not be the rule; and assumed

flight savings made in this way are likely to be more imaginary than real.
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In all probability, the direction of the line-of-nodes for missions other

than sun synchronous will not be important, and in general, not specified.

The expectation of being able to deliver on one flight as many of these pay-

loads as can be loaded into the cargo bay without exceeding the launch vehicle

performance capability is a reasonable one. However, orbital precession makes

it doubtful that more than one payload per flight can be retrieved with either

Shuttle or Shuttle-Tug in any class of missions except, of course, geosynch-

ronous. This has been ignored in the solar and sun synchronous simplified

traffic model studies above. It is assumed throughout this study that multiple

payload retrievals are possible on both Shuttle and Shuttle-Tug flights.

GEOSYNCHRONOUS ORBITAL TAXI MISSION POTENTIAL

Geosynchronous payloads must be stationed over specified longitudes.

When groups of these payloads are delivered or retrieved by Tug, it must make

a series of longitude shifts (or it must be assumed the payloads themselves

have this maneuver capability) to position the up payloads and gather together

the down payloads. Tug propellant consumed by these onorbit maneuvers is

inversely proportional to the time allowed for them. In the limit, any longi-

tudinal shift can be made in infinite time with zero propellant. However, the

Tug has an onorbit lifetime of roughly 7 days, and the propellant required for

longitudinal shifts with this time constraint can markedly reduce the Tug's

already limited payload retrieval capability. In recognition of this require-

ment it is usually conceded in traffic model analysis that the maximum number

of geosynchronous payloads that can be handled on one Tug flight is three up

and one down even when available orbiter cargo bay volume allows more payloads.

An orbital taxi SEPS placed in geosynchronous orbit to position and gather up

payloads could relieve Tug of this requirement and allow it to deliver and

retrieve as many payloads as it could without exceeding its performance limit.

To get an indication of the worth of SEPS as a geosynchronous orbital taxi,

traffic models with and without the three up and one down constraint are

compared in Table 2-6. The number of upper stage flights required by the

mission model is shown for geosynchronous, polar and sun synchronous, and other

mission classes (these other are the 28.5-degree high energy and intermediate

missions and the 55-degree missions). This comparison shows that the orbital
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Table 2-6. ORBITAL TAXI MISSION ROLE

Number of Upper Stage Flights - IUS and 9.1 M BL Tug

NO SEPS (3 UP, 1DOWN CONSTRAINT) ORBITAL TAXI SEPS

YEAR GEOSYNC POLAR OTHER GEOSYNC POLAR OTHER

1981 4 -- 1 3 -- 1

1982 3 -- -- 2 -- --

1983 5 -- -- 5 -- --

1984 9 5 3 5 2 3

1985 5 1 1 4 1 1

1986 6 1 1 6 1 1

1987 5 1 2 5 1 2

1988 7 1 -- 6 1 --

1989 8 2 1 6 2 1

1990 9 2 2 8 2 2

1991 4 2 1 4 2 1

TOTAL 65 15 12 .. 54 12 12

taxi SEPS can save 11 flights in delivery and retrieval of geosynchronous

payloads assuming none of them had self-taxiing ability.

Most of the geosynchronous orbit payloads, due to their requirement for

mission stationkeeping and attitude control, have the inherent capability for

self-taxiing. Their ACS usually provide for both attitude control and station-

keeping propulsion functions. If the payloads' ACS propellant supplies are

increased from about 2 to 8 percent (depending on the specific payload) more

than the nominal requirement, the payloads are self-taxiing.

In order to be ultraconservative and realistic, NSI's System Operational

Profile for STS without an earth orbital SEPS does-not arbitrarily limit Tug

alone sorties to three payloads up and one payload down on any individual

flight. Tug's multiple payload package delivery and retrieval capability is

limited only by Orbiter's characteristics and Tug's performance. Since STS
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without EO SEPS' unconstrained performance is the reference for cost effec-

tiveness analyses, the 11 flights mentioned above are not included in the SEPS

transportation cost savings development.

COMBINATION TUG-SEPS SORTIES FOR MAXIMUM STS TRANSPORT EFFECTIVENESS

In this study, the orbital taxi mission role was considered to be an

essential and integral part of the SEPS geosynchronous mission role. Thus,

the time and propellant required by SEPS to do the longitudinal shifts dictated

by the payloads being carried on a sortie are included in performance calcu-

lations when SEPS is used as a transport stage for the delivery and retreival

of geosynchronous payloads.

Some longitudinal position data is specified in the level B Space Shuttle

Payload Data (SSPD) and in the reference mission model, but not in sufficient

detail for traffic model analysis. Using the SSPD as a guide, and based on

information supplied by Marshall Space Flight Center, Table 2-7 was developed.

Table 2-7 specifies by year the west longitude for the geosynchronous deliveries

and retrievals in the mission model. Delivery longitudes are shown above the

diagonal, retreival longitudes below. When several deliveries or retrievals

of one type of payload are specified in a year, their respective longitudes

are shown by more than one entry above or below the diagonal.

There are 133 geosynchronous missions in the mission model, 102 of these

are deliveries, 31 are retreivals. This number is more than five times the

number in any other mission class that requires upper stages. This provides

the opportunity for SEPS to demonstrate its effectiveness when used to augment

the Tug's performance as a transportation stage. This study shows that the

most effective mode of operation for SEPS is a space-based mode with refueling.

SEPS is launched and remains in space until the end of its useful life at

which time it is retrieved for refurbishment and reuse. Once launched, SEPS

repeatedly shuttles back and forth between geosynchronous orbit and changeover

orbit where it meets and exchanges multiple payload packages with Tug. SEPS

performs all taxi functions between specific geosynchronous longitudes.

Traffic models were developed with SEPS in the geosynchronous mission role for
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Table 2-7. WEST LONGITUDE OF GEOSYNCHRONOUS PAYLOADS

ID NASA 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
ID NO.76 , ,o/ Io/- I ro/ "o

EO-4A 
100

77

100 100 100
1 '105

EO-4B
79

8 073 7 10
EO-5E

,_92 // oo95
EO-7

103 
40

10 /1 I I "0

NN/D-2C 170 170

F07 I40 50 30 60

NN/D-I 15 190 170 35

;7/" 20;140 180 185 50

:F:"YF / ;i _
1098 104 11

NN/D-2A 130 120

85 88 1 8 127 130
94 103 109 121 127

NN/D-2 112

112 M B94 /124 94J I I

NN/D-3 
124

1 94 124

52-
114 180 162 175 29 162 52 175

NN/D-4

116 0 9 / 4 0 976/ I 0 1 86 350 106 10 0

117 08

99 .0E 10 86

11 96 100

NNID-x

NND-9122 1 220 2151 226 220 215. /22 I 2
122 

22_5 220 I

123I s80 100

NND-10 80 80 H
124 120

127 8 1 18

NN/D-12

129
NNID-13
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several Tug and SEPS configurations. These were compared to baseline traffic

models generated without SEPS to evaluate their effect on transportation cost.

The effect of various SEPS and Tug operational constraints were similarly

investigated. In particular, the delivery of payloads from the low and inter-

mediate orbit class by Tug on its way to changeover orbit with geosynchronous

payloads was found to be desirable. In each case, traffic models were made

for the complete mission model. This allowed payloads in one class of missions

to be loaded with those from another whenever it resulted in saving Shuttle

flights. More efficient use is made of available cargo space and vehicle

performance that would be the case if the mission model had been segregated

into classes. A discussion of the traffic model results will be presented

after a discussion of trajectory analysis to maximize SEPS-Tug performance and

the traffic modeling methods.

2.3 TRAFFIC MODELING METHOD

Traffic modeling is the determination of the number of Shuttle Tug flights

(with their cargo manifests specified) in each year required to deliver and

retrieve the payloads specified by the mission model and the sequencing of

SEPS sorties by date. Payloads are added to a Shuttle flight until no more

will fit in the Shuttle cargo bay or the Shuttle or Tug performance limit is

exceeded. The WHATIF computer program developed by Northrop has been used

for previous traffic model studies by both NSI and MSFC. With the addition of

SEPS to the STS as a transportation stage in the geosynchronous mission role,

traffic modeling takes on several new aspects. Without SEPS, Shuttle flights

use discrete and independent events and their scheduling is relatively straight-

forward. In fact, WHATIF does not actually assign launch dates to Shuttle

flights but simply provides a list of the necessary flights and payload assign-

ments in each mission year and these are subsequently scheduled.

SEPS sorties.can take as much as half a year and they are not independent.

SEPS performance on a sortie depends on the propellant and power (as affected

6 Tvory, L. R., "Shuttle and Tug traffic Scheduling Program," Northrop Services,

Inc., Huntsville, Alabama, Informal Memorandum 9240-73-158, April 1973.
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by radiation) remaining at the end of the previous sortie. Thus, scheduling

of SEPS sorties and the launch, retrieval, and refueling of onorbit SEPS

requires keeping track of the status and availability of each SEPS. Changeover

orbital data is also required for the determination of sortie trip times. To

provide this capability, a number of additions were made to the WHATIF program.

These additions resulted in what is, for practical purposes, a two part program

with each part largely independent of the other. In order to minimize the

number of Shuttle flights required, the maximum possible utilization of the

orbiter's cargo bay volume must be accomplished.

The first part of the two part program packages payloads in the available

cargo volume forward of Tug for the ascent part of the sortie. If payload

retrievals or service round trip missions occur in that year, a descent package

is determined. If Tug alone cannot accomplish that sortie it is assigned to a

Tug-SEPS sortie. The first part then determines Tug-SEPS changeover orbits

and trip times; schedules Shuttle-Tug launches, by day number to support the

SEPS sorties; and determines the necessity of launching, retrieving, or refuel-

ing SEPS. After all full-volume or Tug performance limited missions have been

assigned to SEPS-Tug sorties, the second part (the original WHATIF program)

then assigns to Shuttle or Shuttle-Tug flights the remaining payloads.

With one exception, for the second part functions, the operation and

capability of the original program for scheduling of Shuttle flights without

SEPS was not changed. The MOLTOP computer program was used to generate SEPS

trajectory and changeover orbit data. This data was then included (in the

form of tables) in the SEPS part of the WHATIF program. Data input and output

routines, payload packaging routines, and the method of assigning payloads to

flights are common to the two parts of the program. The following paragraphs

describe:

* The methods used in the WHATIF part of the program

* Tug-SEPS performance calculations for delivery of geosynchronous

payloads

7Williams, D. F., "MOLTOP Users Manual," Northrop Services, Inc., Huntsville,

Alabama, Memorandum M-240-1224, October 1973.
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* Generation of changeover orbit data using the MOLTOP program

0 The operation of the SEPS part of the program.

WHATIF METHOD

The mission model is analyzed by years. It is assumed that all the

payloads to be scheduled in a year are ready and available on the first day of

the year. No carryover payloads from one year to the next are allowed either

at the beginning or end of a year. This seemingly unimportant assumption in

the computerized analysis probably results in STS with SEPS traffic models

containing more Shuttle flights than necessary. Many year-end flights were

only partially loaded. If payload missions from the next year could have been

brought forward, the full capabilities of year-end flights could have been

utilized. The assessment of SEPS savings is again conservative by the poten-

tial of three to five flights saved..

The payloads are first classified according to the upper stage required

for their delivery or retrieval one at a time. The order in which upper

stages are considered in this classification can be anything, but it is usually

specified in order of increasing performance from no upper stage (Shuttle-

alone) through one upper stage, one upper stage plus kick stage, and finally

tandem upper stages requiring two Shuttle launches. In this way, each payload

is classified by the lowest performance stage that can deliver it. The pay-

loads are then ordered in a list with those requiring the highest performance

upper stage at the head of the list. These are followed by the rest of the

payloads in order of decreasing upper stage performance ending with those that

can be delivered by the Shuttle alone.

The first payload in the list is then loaded into the cargo bay along

with the necessary upper stage. An attempt is then made to load each of the

following payloads in succession. At each attempt a number of tests are made:

* Is the payload compatible with those in the bay?

* Will it fit in the remaining available volume?

* Can the vehicle deliver it along with others already loaded without
exceeding its performance limit?

* Is the Shuttle up or down weight within limits?
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If the answer to all of these questions is yes, the payload is added to the

flight; and the next payload in the list is considered in a like manner. If

any test is failed, the payload is rejected and the next payload is considered.

This procedure is continued to the end of the list, each payload being consid-

ered in turn.

The flight and the payloads assigned to it are then scheduled. The

procedure then returns to the first payload in the list that has not been

assigned. It makes up the next flight the same way. When all payloads have

been assigned to flights the procedure is repeated on the list of payloads to

be scheduled in the next year and so on through the mission model.

Shuttle performance capability used in these calculations is shown on

Figures 2-1 and 2-2. These are the Shuttle payload curves from the Shuttle

Payload Accommodations document8 and were in the ground rules for this study.

Upper stage performance calculations use impulsive AV approximations and

idealized rocket equations. Orbit transfer AV calculations assume that the

line-of-nodes of the orbits are aligned, and if the orbits are elliptical that

the line of apsides are along the line-of-nodes. These are the conditions

necessary for minimum energy transfer between inclined orbits. The optimism

of these assumptions has been mentioned previously. Provisions are made for

the calculation of performance for reusable or expendable combinations of

reusable and expendable stages for either earth orbit or escape missions.

Upper stage performance calculations are limited to no more than two stages

(for example, tandem Tugs plus a kick stage cannot be handled).

Payload packaging in the cargo bay can be done in any one of three ways,

(1) end-to-end, (2) side-by-side on Shuttle vertical centerline, and (3) three-

dimensional. Because of the way study computer programs were derived from com-

plex existing programs, some limitations of the earlier programs remained. We

are aware of no places where these limitations made significant differences in

STS compared to STS with SEPS.

8 johnson Space Center, JSC 07700, Volume XIV, Appendix B, Rev. A., "Space

Shuttle Payload Accomodations," 16 July 1973.
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When the program makes up cargo manifests for Shuttle flights and Shuttle-

Tug flights not involving SEPS, in all cases the maximum number of payloads

allowed on one flight (total of up plus down) is six. For example, if there

are five up payloads, there will be only one down payload. This constraint

applies only to Shuttle and Shuttle-Tug flights assigned by the WHATIF program.

SEPS flights are assigned by the SEPS part of the program and the number of

payloads per SEPS flight is subject only to the restrictions of cargo-bay

volume and the limitations of the various packaging routines. The end-to-end

routine can handle six up plus six down, the side-by-side four up plus four

down, and the three-dimensional can pack ten up plus ten down. The three-

dimensional packaging was added in this study primarily for SEPS where it was

felt that the original routines were too restrictive to take advantage of the

SEPS capability which is not performance limited. Though added for the SEPS

part of the program, the three-dimensional packaging can be used by the WHATIF

part, and it is the one area where the/original capability was extended.

Shuttle cargo center-of-gravity position restrictions are not checked in any

of these packing routines. Some control of cg location is possible because of

the freedom to rearrange individual packages.

The WHATIF method does not guarantee the minimum number of required

Shuttle flights; it is a heuristic attempt to achieve something like a mini-

mum. Experience has shown that changes in the upper stage preference order or

a change in the order in which payloads are considered can result in plus or

minus one or two flights required over the 11 years of the mission model.

When used for trade studies of various STS concepts, differences of one or two

flights either way are probably not significant in most instances.

2.4 TUG-SEPS PERFORMANCE AND TRAJECTORY ANALYSIS FOR GEOSYNCHRONOUS
PLUS INTERMEDIATE ORBIT TRAFFIC

The Tug-SEPS trajectory profile is shown on Figure 2-3. If an interme-

diate payload is being delivered, the Tug first transfers from the 160-

nautical mile and 28.5-degree parking orbit to the intermediate orbit also at

28.5-degree inclination (by definition of intermediate payloads). The Tug

then burns for transfer to the changeover orbit. This burn must be made at

the line-of-nodes of the parking and intermediate orbits since the changeover
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orbit inclination is less than 28.5 degrees, and a plane change is required.

To minimize the AV for this transfer, some of the plane change is done during

this burn, typically 1.5 to 2.0 degrees. If the changeover orbit is ellipti-

cal, as shown on Figure 2-3, the minimum energy transfer further requires that

the Tug transfer to apogee of the changeover orbit where the remainder of the

plane change is done. This means that the line of apsides of the changeover

orbit is along the line-of-nodes. In the changeover orbit, Tug and SEPS

rendezvous, exchange payloads, and the Tug deboosts to Shuttle parking orbit

or to an intermediate orbit if an intermediate payload is being retrieved.

SEPS then slowly changes the size and shape of its orbit from changeover orbit

to geosynchronous equatorial orbit. If an expendable stage (IUS) is being

used it is expended in changeover orbit. This is the trajectory profile that

was evolved in this study. The intermediate orbits complicate the following

discussion of Tug and SEPS performance calculations, and a discussion of this

effect will be deferred until later.

It is known that the AV required for orbital transfer with low-thrust

vehicles such as SEPS is essentially independent of thrust-to-weight and

specific impulse (this is analogous to the impulsive AV approximation used for

high-thrust vehicles). Thus, the propellant consumption for any SEPS orbital

transfer can be calculated as

M = M°  - e .
ex

Where M is the initial mass, including payload; AV is the SEPS AV required

for the transfer; Vex is the SEPS exhaust velocity (gcIs). For electric

propulsion the propellant flowrate is given by

2P
2

ex

where P is the exhaust beam power in watts and V is in m/sec. The burn timeex

required for the transfer is

M
Tb -

2-36



NORTHROP SERVICES, INC. TR-1370

in the absence of earth shadow or power degradation due to radiation. It has

been found by others and also in this study, that passage of SEPS through the

earth's shadow increases trip time by an average of four percent (Figure 3-22,

Section III of this volume). In the presence of radiation, power is not

constant and calculation of transfer time, assuming constant M as above, is

not applicable. This will be discussed later.

Since SEPS trip times can be long, it is desirable to use as much AV as

Tug can provide. When the Tug payload is specified, along with its initial

mass, its one-way AV capability is

Mfu
AV -V in -

Tug exTug M

where

Mfu = 1/2 AP + AP2 + 4 Mo Mf

AP = Pld - Pld
up down

M = Plddown + M o

MD = Tug burnout mass.

This Tug AV defines a three-parameter family of changeover orbits to which the

Tug can transfer from parking orbit. The optimum changeover orbit is the one

characterized by the ra, r , and i that minimizes SEPS AV. This SEPS AV

minimization can be carried out for the range of Tug AV's of interest. These

results for elliptical and circular changeover orbits will be presented in a

later paragraph.

INTERMEDIATE ORBITS

When intermediate payloads are delivered or retrieved by Tug on SEPS

sorties, the Tug AV cannot be calculated as just described. In addition, the

optimum changeover orbits will depend on theparticular intermediate orbits

involved. That the set of optimum changeover orbits determined for transfers

from Shuttle orbit will be nearly optimum for transfer from the intermediate
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orbits. An iteration is done to find the "highest" (least SEPS AV) changeover

for each orbit in this optimum set that the Tug can reach after transferring

to the intermediate orbits.

SEPS PERFORMANCE CALCULATION WITH RADIATION

Because radiation damage to the solar arrays reduces available thruster

power, minimizing SEPS AV is not equivalent to minimizing trip time. However,

as will be seen in the next paragraph, when SEPS trip time is minimized in the

presence of radiation, the optimum changeover orbit parameters and SEPS AV are

nearly unaffected. Because of the power variation along the trajectory and

the resulting variable mass flowrate, the SEPS burn time for a given Tug AV is

dependent on the thrust-to-mass ratio and the ratio of the initial power at

the beginning of the transfer to the degraded power. The change in the accum-

ulated fluence which determines the power degradation during a sortie is also

a function of these two parameters. This also depends on whether the transfer

is an ascent or descent. Data from MOLTOP trajectories are shown on Figures

2-4 and 2-5 for descent and ascent at a Tug AV of 3000 m/sec. Similar data

was generated at other Tug AVs and parameterized for inclusion in the SEPS

part of the WHATIF program. This data allow trip times and power degradation

to be calculated for SEPS sorties in the traffic models.

CHANGEOVER ORBIT DATA

Optimum changeover orbits were generated by the MOLTOP computer program.

Three kinds of optimum changeover orbits were investigated, (1) circular with

a minimum radius of 20,000 kilometers, (2) an elliptical with a minimum perigee

radius of 20,000 kilometers, and (3) an elliptical without constraints. The

first two were optimized without radiation simulated, the last included simu-

lation of solar cell power degradation due to radiation. The radiation model

was supplied by MSFC's Space Sciences Laboratory. Radiation flux in equivalent

1 MEV electrons is shown on Figures 2-6 and 2-7 for two orbit inclinations of

interest. This is the flux contribution from one side of the array and was

doubled for total flux. This data is treated as instantaneous values of flux

along the trajectory and is integrated to obtain the accumulated fluence.

Power degradation with accumulated fluence for the 8-mil N/P silicon solar
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cell used on the baseline SEPS is shown on Figure 2-8. A 4-mil cover glass

plus equivalent backside protection was used.

SEPS AV as a function of Tug AV is shown on Figure 2-9 for the three

kinds of changeover orbits. The sudden upturn in the constrained curves is

where the optimization hits the minimum altitude boundary. Changeover orbit

parameters are shown on Figures 2-10, 2-11, and 2-12. Notice that the SEPS AV

savings with elliptical orbits compared to circular orbits are due to the

ability of the Tug to make more of the required plane change at the high

apogees of the elliptical orbits. Since it is easier for SEPS to raise the

perigee altitude than make a plane change, the ellipitical orbits require 
less

SEPS AV for a given Tug AV.

SEPS PROGRAM METHOD

The SEPS part of the program assigns payloads to SEPS sorties using the

method of the WHATIF program, except that the payloads are restricted to

geosynchronous payloads. After all possible geosynchronous payloads have been

assigned, the program tries to add intermediate payloads. These payloads are

delivered in order of increasing altitude and are retrieved in order of decreas-

ing altitude. Tug AV is calculated as previously described. Four SEPS modes

are provided: (1) new SEPS launch; (2) normal down-up sortie: (3) deliver a

new SEPS, retrieve an onorbit one (the exchange mode); and (4) refuel. A new

SEPS is launched anytime there are none available onorbit (they are all busy)

and the traffic requires it. SEPS are exchanged when an onorbit SEPS has been

refueled the maximum number of times or it has exceeded its five year onorbit

lifetime or the maximum thruster life has been exceeded. Refueling is done a

specified number of times that the need to refuel is determined (by comparing

propellant remaining at the end of a sortie with the average propellant consump-

tion per sortie for the particular SEPS since its last refueling). When the

propellant remaining is less than the average, the SEPS is scheduled to be

refueled on its next trip to changeover orbit. Shuttle-Tug launch dates are

assigned for each SEPS sortie. In this program,.it is assumed that all pay-

loads are launched within the year if the Shuttle was launched within the

year. The SEPS and payload may not reach geosynchronous orbit until sometime

the next year.
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Payloads that cannot be combined to require a SEPS (that is the changeover

orbit is equal to or greater than geosynchronous orbit) are returned to the

WHATIF program to be scheduled on Shuttle and Tug flights. This occurs when

there are not enough payloads left in the year to make up a SEPS sortie, or

they cannot be packaged densely enough to exceed Tug payload delivery capability.

ORBITAL TAXI LONGITUDE SHIFT PERFORMANCE

The time and propellant required for SEPS to make longitude shifts in

geosynchronous orbit are computed as shown on Figure 2-13. This data is based

on data contained in Rockwell International
9 and NSI10 studies. Figure 2-14

shows longitude shift times for the upper and lower extremes of SEPS thrust-

to-weight ratios. Sortie trip times are based on payload longitudes shown on

Table 2-7.

2.5 TRAFFIC MODEL RESULTS

Traffic models with SEPS in geosychronous mission role were generated for

several Tug and SEPS configurations. Traffic models were also generated

without SEPS to provide a reference for comparisons which would show the

effectiveness of SEPS in the transportation system. Study ground rules speci-

fied that an expendable Interim Upper Stage (Transtage) would be used from

1981 through 1983, and the high-performance reusable Tug from 1984 through

1991. Weight and performance data for the IUS and 9.1 meter Tug baselined for

the study are listed in Table 2-8. Also shown in this table are data for

three other Tug configurations that were investigated. The 9.1 meter ARL-10

Tug is the baseline Tug with a lower performance and lower development cost

engine. The 7.6 meter and 6.4 meter toroidal tank Tugs are compact high-

performance Tugs based on design studies by General Dynamics.

9 Rockwell International Corporation Report SD 72-SA-0199-2-1, "Feasibility

Study of a Solar Electric Propulsion Stage for Geosynchronous Equatorial

Missions," 23 February 1973.

1 0Greenleaf, W. G., "Solar Electric Propulsion Stage Geosynchronous Terminal

Rendezvous Geometry, Propulsion, and Guidance Compatibility Analysis,"

Northrop Services, Inc., Huntsville, Alabama, Memorandum M-240-1215, May 1973.
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Table 2-8. TUG AND IUS PERFORMANCE DATA

9.1 METERS 9.1 METERS 7.6 METERS 6.4 METERS
CONFIGURATION IUS BASELINE TUG TOROIDAL SHORTENED

PARAMETER (Transtage) TUG ARL-10 TANK TOROIDAL TANK

Drop Wt-kg 2116. 2747. 2747. 2883. 2784.

Usable Prop. WT-kg 14586. 23008. 23008. 24329. 18641.

Specific Impulse-sec 308.2 449.0 430.8 449.4 447.2

(effective)

Thrust-kg 7258. 6804. 6804. 6804. 6804.

Length-m 5;85 9.14 9.14 7.62 6.40

Shuttle Interface Wt-kg 1361. 862. 862. 862. 862.

An earth-orbital SEPS configuration had been evolved in earlier studies

by Rockwell International. By NASA direction, this configuration was taken as

the baseline SEPS for this study. This SEPS had a 25 kw solar array and nine

thrusters; it used eight at a time with a 10,000-hour life each, giving it a

maximum total thrust time of 11,250 hours. Shortly after the beginning of

this study, the baseline thruster lifetime was increased to 20,000 hours 
in

view of the results from the thruster technology program tests.

In-space refueling of SEPS was selected because of its advantages 
in trip

time savings and the potential savings in the Shuttle flights. Reduction in

trip times occur because of the smaller average propellant 
load.

Performance and summary weight data for the original 25 kw configuration

and the baseline 25 kw SEPS are shown in Table 2-9a. Data for three higher

power SEPS investigated in this study are also shown 
in Table 2-9a. Table 2-

9b provides a weight breakdown of these SEPS variants. Screen power for the

thrusters is taken directly from the solar array in these three configurations.

The higher efficiency of these SEPS is due to the elimination of power 
proces-

sing losses for screen power. The 50 kw configuration with higher specific

impulse gets an additional boost in efficiency because of 
increased thruster

efficiency at the higher screen voltages used to power the higher 
specific

impulse. The 100 kw configuration is equipped with radiation resistant 
cells

that degrade to about 85 percent of their new output and then remain 
at this

level due to their self-annealing property. This configuration was called

upon to operate through the radiation belts, and 
it was assumed that its

average solar array power for performance calculations was 85 
kw.
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Table 2-9a. SEPS PERFORMANCE DATA

25 kw 50 kw
ONFIGURATION 10000 hr 25 kw 50 kw 4158 sec 100 kw

Thrusters Baseline BL Isp BL Isp SEPS
PARAMETER Not Refueled SEPS SEPS SEPS
Power to Thruster - kw
Subsystem (Undegraded) 24. 24. 49. 49. 85.*

Overall Efficiency 0.649 0.649 0.691 0.766 0.691
Beam Power - kw (Undegraded) 15.58 15.58 33.86 37.53 58.74*
Specific Impulse - sec 2,940 2,940 2,940 4,160 2,940
Empty Weight - kg 1,256 1,243 1,743 1,552 3,043
Propellant Capacity - kg 1,520 771 1,542 817 1,631

(Not refueled) (Refueled 3X) (Refueled 3X) (Refueled 3X) (Refueled 3X)

Length - m 2.59 2.59 3.66 3.66 8.63
Max Thrust Time - hrs 11,250** 22,500** 20,000 20,000 20,000

*Minimum power - Fully degraded radiation resistant cells
**1 spare thruster

Table 2-9b. SEPS WEIGHT BREAKDOWN

VEHICLE 25 kw SEPS 50 kw SEPS 50 kw SEPS
CHARACTERISTIC BL 2940 Isp SPSA 2940 Isp SPSA 4158 Isp
Thrusters and Related Elements 154 274 137
Thruster Power Processing 165 74 131
RCS 24 35 35

Solar Arrays, Solar Power Distribution & 428 855 855Related Elements

Energy Storage & Distribution 82 82 82
Thermal Control (other than for

Power Processors)
Guidance and Navigation 44 44 44
Command Computer 11 11 11
Communications 61 61 61
Data Storage 15 15 15
Hg Propellant System 39 39 39
Mechanisms and Structures 41 41 41
Structures Associated with Launch

Interface Loads
Docking and Manipulation 87 87 87
Miscellaneous 7 7 7

Dry SEPS Weight 1209 1694 1519

Mercury Propellant 9071 9071 9071
N2H4 66 66 66

Wet SEPS Weight 2181 2665 2492
Ref Isp 2940 2940 4158

lFor refieled space operation basic tank capacity was scaled fron this value
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The traffic model for the baseline Tug was generated using three-

dimensional packaging without limiting the number of payloads on Tug flights

to three up and one down. The number of flights in this model, which was to

serve as the reference throughout the study, are shown in Table 2-10. A total

of 452 Shuttle flights are required by the mission model from 1981 to 1991.

Upper stages are necessary on 136 flights. The column headed "OTHER" in this

table are flights required by the 28.5 degree intermediate and high-energy

missions and the 55 degree missions. Since SEPS in the geosynchronous mission

role does not affect the number of Shuttle-only flights, traffic moldel results

for the various STS configurations are compared using the number of required

upper stage flights. The PL-18 planetary payload in 1981 could not be schedu-

led by the WHATIF program since it requires more than two upper stages for

delivery. The two flights for this payload are not included in the traffic

model results for any of the STS configurations. In order to reduce computer

run times and establish gross effects, the initial evaluation of the STS

configurations was done using the following simplified ground rules:

1. Payloads packaged three-dimensionally with no prespecified limit on
the number per Tug flight.

2. Elliptical changeover orbits on SEPS sorties with no constraint on
minimum perigee altitude and radiation effects included.

3. SEPS trip time limited to less than 90 days per leg, 180 days maximum
sortie trip time.

4. SEPS configurations with 20,000 hour thrusters refueled three times.

5. Intermediate payloads not delivered by Tug on SEPS flights.

The effect on the model of each of these ground rules will be discussed later.

Upper stage flights from the traffic models for each configuration

investigated are shown in Table 2-11. With the assumed ground rules, the 25

kw baseline SEPS used with the 9.1 meter baseline Tug could save ten flights.

The maximum number of flights saved was with the 7.6 meter Tug and 50 kw SEPS.

The ARL-10 Tug could not deliver one PL-23 payload in 1990 and 1991 under the

simplified rules. This is in addition to the PL-18 which cannot be delivered

by the IUS in 1981. Because of the length of the PL-23 payload, three Shuttle

flights would be required for its delivery with the ARL-10 Tug. In the 6.4

meter and 7.6 meter Tug combination configuration, planetary payloads were
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Table 2-10. TRAFFIC MODEL FOR 9.1 METER BL TUG WITHOUT SEPS
NUMBER OF FLIGHTS,1981-1991

UPPER STAGE FLIGHTS SHUTTLE-ONLY FLIGHTS

YEAR ESCAPE GEOSYNC POLAR OTHER AUTOMATED SORTIE. TOTAL

81 4* 3 - 1 2 17 27

82 1 2 - - 3 19 25

83 6 5 - - 7 21 .39

84 5 5 2 3 4 23 42

85 10 4 1 1 6 27 49

86 10 6 1 1 6 26 50

87 6 5 1 2 5 25 44

88 2 6 1 - 4 29 42

89 3 6 2 1 3 27 42

90 5 8 2 2 4 26 47

91 6 4 2 1 5 27 45

TOTAL 58 54 12 12 49 267 452

Total upper stage flts 
= 136

* NOTE: Payload PL-18 in 1981 cannot be delivered by tandem
expendable IUS in 2 shuttle flights. This payload

requires tandem IUS + kickstage in 2 shuttle flights

Table 2-11. STS CONFIGURATION TRADES

NUMBER OF UPPER STAGE FLIGHTS, 1981-1991

TUG 9.1M TUG 6.4M & 7.6M REUSABLE9.1M BL TUG 7.6M TUG
SEPS (ARL-10) TUGS TRANSTAGE

NO SEPS 136 150* 139 - -

25 KW SEPS
10 KHR THRUSTERS 127 127* - 133 -

BL SEPS
20 KHR THRUSTERS 126 - 123 133

50 KW SEPS
20 KHR THRUSTERS 124 - 122 125

50 KW SEPS Isp = 4,160
20 KHR THRUSTERS 124 - 122 126 -

100 KW SEPS
20 KHR THRUSTERS - - - - 138**

* 90-DAY TRIP TIME LIMIT FOR SEPS
* ELLIPTICAL CHANGEOVER ORBITS, PERIGEE ALTITUDE NOT CONSTRAINED
* RADIATION EFFECTS INCLUDED
* SEPS CONFIGS. WITH 20 KHR THRUSTERS REFUELED 3 TIMES
* INTERMEDIATE ORBIT PAYLOADS NOT DELIVERED ON SEPS FLIGHTS

*PLD PL-23 Jupiter Satellite Orbiter Lander could not be delivered.
**Requires tandem transtage + kickstage for some planetary PLDs, PL-8 and PL-23 could not be delivered

in 1990 and 1991.
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delivered with the 7.6 meter Tug, and all other payloads were delivered with

the 6.4 meter Tug. This configuration would have made a considerably better

showing if the 6.7 meter Tug were used only for SEPS sorties.

The reusable transtage is the IUS used in a recovered mode. Because of

the limited performance of this stage and the large weight of the 100 kw SEPS

used with it, changeover orbits were at relatively low altitudes with perigees

practically at Shuttle parking orbit altitude. This system was configured

with radiation resistant solar cells to maintain its power level when

operating through the Van Allen belt. Tandem expendable transtages plus a

kickstage are required for delivery of the majority of the planetary payloads,

and one PL-8 and PL-23 payload in each of the years 1990 and 1991 could not be

delivered by this system with two Shuttle flights. In order to achieve the

138 flights with this system, SEPS is required to deliver the 55 degree pay-

loads and the 28.5 degree intermediate and high-energy payloads in addition to

performing its geosynchronous mission role.

The impact of operational modes and constraints as reflected by the

ground rules on traffic model flight requirements was investigated. The effect

of increasing the trip time limit to 180 days per leg is shown in Table 2-12.

Since the trip time constraint limits the number of payloads that can be

carried on a sortie, it is expected that increasing the allowed trip time will

result in a reduction of flights. Table 2-12 shows that the baseline configu-

ration is not significantly constrained by the 90-day limit. However, the 6.4-

meter Tug configuration which provides more room in the cargo bay for payloads

would benefit with longer allowed trip times or by a SEPS with even more power

than the 50 kw SEPS.

A parametric investigation of the trip time benefits of higher power SEPS

was conducted. The payload delivery and retreival capability of the 9.1 meter

baseline Tug is shown on Figure 2-15. Payload weights carried on SEPS sorties

taken from the traffic model of the 25 kw baseline SEPS with this Tug are

spotted on the plot. These sorties lie primarily in the region between Tug AV's

of 3,400 to 4,200 meters per second. Tug AV capability determines the changeover
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20
S* 9.1 METER BL TUG WITH 25 KW BL SEPS

TUG AV CAPABILITY * INTERMEDIATE ORBIT PLDS NOT
8 3000 m/sec (ONE-WAY) DELIVERED ON SEPS SORTIES

ELLIPTICAL C/O ORBITS WITH RAD.
* 90 DAY TRIP TIME LIMIT PER LEG

3 C3200

I ROUND TRIP

1 105 1 00 SEPS SORTIES
0 4- 0

S38003-

0 5 10 15 20

UP PLD ON TUG - 103 LBS

I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9

UP PLD ON TUG - 103 KG

Figure 2-15. TUG C/O ORBIT PERFORMANCE

Table 2-12. TRIP TIME LIMIT COMPARISON, NUMBER OF UPPER STAGE FLIGHTS,
1981-1991

UPPER STAGE FLIGHTS REQUIRED
CONFIGURATION MAX TRIP TIME/LEG

TUG SEPS 90 DAYS 180 DAYS

9.1 m 25 kw BL 126 125

7.6 m 50 kw 4158 sec Isp 122 121

6.4 m
7.6 m 50 kw 4158 sec Isp 126 121

NOTES: 1. EZlliptical changeover orbits with radiation.
2. SEPS refuclod 3 times.
3. Intermudiate orbit payloads not delivered on SEPS flights.
4. 3-D packaging without 3 up-1 down limit on Tug.
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orbit and, hence, the SEPS AV required from changeover orbit to geosynchronous

orbit. SEPS AV and the payload weights then determine the SEPS sortie trip

time. Sortie times are plotted on Figure 2-16 for the 25 kw baseline SEPS and

50 kw 4158 BL Isp SEPS when used with the baseline Tug. SEPS sorties for the

25 kw baseline SEPS fall within the shaded areas. The curves are plotted

neglecting solar array power degradation due to radiation. The fact that some

of the actual SEPS sorties lie above the curves indicates trip time increase

caused by power degradation.

Sortie trip time savings with the 50 kw SEPS are shown on Figure 2-17.

Trip time reductions of 25 to 55 days are possible in the region of most

frequent SEPS operation with the higher power SEPS configuration.

The type of changeover orbit determines the SEPS AV required for transfer

from geosynchronous orbit to changeover orbit and back. These AV's are shown

on Figure 2-9 for the three kinds of changeover orbits considered in this

study. That figure shows that elliptical changeover orbits require signifi-

cantly less SEPS AV than circular, particularly in the region of most frequent

SEPS operation. Since trip time is determined by the required SEPS AV, it

would be expected that the use of elliptical changeover orbits would allow

more payloads to be delivered per SEPS sortie within the trip time limit. A

reduction in the number of flights should be the result. Upper stage flights

required by traffic models generated with the three different kinds of change-

over orbits are shown in Table 2-13. Table 2-13 shows that the type changeover

orbit has little effect on the number of Shuttle flights. This is because

these configurations are not constrained by the 90-day trip time limit as was

shown in Table 2-12. In a mission model more demanding of SEPS capability,

shorter trip time limits would be desired to reduce the number of onorbit SEPS

required to handle the traffic in high volume years. In this case, trip time

limits much less than 90 days would constrain these configurations and result

in an increase in flights.

Sortie trip time reductions with elliptical changeover orbits are shown

on Figure 2-18 for the baseline configuration. Recall that the majority of

2-57



250
DELIVER 0 9.1 METER BL TUG

2 INTERMEDIATE ORBIT PLDS NOT
25 KWTRIP DELIVERED ON SEPS SORTIES 1
SEPS ROUND TRIP

* ELLIPTICAL C/O ORBITS WITH RAD.

200
RETRIEVE

0
15 0 5 0 K

SEPS

. S SEPS SORTIES (25 KW BL)

_-

U,- 1 DELIVER

ROUND I l•

RETRIEVE

50

0
3000 3200 3400 3600 3800 4000 4200 4400

ONE-WAY TUG AV - M/SEC

Figure 2-16. SORTIE TRIP TIMES REQUIRED BY 25 KW SEPS AND 50 KW SEPS
IN CONJUNCTION WITH A 9.1-METER BL TUG=

o



0

100

DELIVER
* ELLIPTICAL CHANGEOVER ORBITS

ROUND TRIP

860

0 3600 3800 4000 4200 4400

-17 OTITRP TIME SAVINGS OF 50 KW SEPS RELATIVE TO 25 KW SEPS

3000 3200 3400 3600 3800 4000 4200 4400

ONE-WAY TUG V - M/SEC

Figure 2-17. SORTIE TRIP TIME SAVINGS OF 50 KW SEPS RELATIVE TO 25 KW SEPS



* ELLIPTICAL VERSUS CIRCULAR C/O ORBITS

0 30 FT BL TUG WITH 25 KW BL SEPS

100 I

m

S 800
, MAX SEPS DELIVER

SPROPELLANT

ROUND TRIP

ci 60
RETRIEVE

o r
40

20

0-
3000 3200 3400 3600 3800 4000 4200 4400

ONE-WAY TUG AV (m/sec)

Figure 2-18. TRIP TIME SAVINGS WITH ELLIPTICAL C/O ORBITS
0



NORTHROP SERVICES, INC. TR-1370

Table 2-13. CHANGEOVER ORBIT COMPARISON, NUMBER OF UPPER
STAGE FLIGHTS, 1981-1991

CONFIGURATION NUMBER OF UPPER STAGE FLIGHTS

C/O ELLIPTICAL
W/RADIATION C/O ELLIPTICAL C/O CIRCULAR

TUG SEPS UNCONSTRAINED rp>20,000 KM r>20,00 KM
PERIGEE

9.1 M BL 25 KW BL 126 126 127

9.1 M BL 50 KW, 4158 Isp 124 124 124

NOTES: 1. 90 day trip time unit per leg.
2. SEPS refueled 3 times.
3. Intermediate orbit payloads not delivered on SEPS flights.

4. 3-D packaging without 3 up-1 down limit on Tug.

SEPS sorties fall in the shaded areas and between the deliver and round-trip

curves. Ten to 50 days can be saved using elliptical instead of circular

changeover orbits.

Payloads in the intermediate orbit class of missions can be delivered on

Tug flights along with geosynchronous payloads since both of these mission

classes require 28.5 degree Shuttle launches. In the baseline traffic model

without SEPS, Table 2-10, 12 flights were dedicated to delivering these pay-

loads and the 55 degree payloads. When SEPS is used to deliver the geosynch-

ronous payloads and the Tug is not allowed to deliver intermediate orbital

payloads on the way to changeover orbit, the result for the 9.1 meter BL Tug

with 25 kw BL SEPS upper stage flights between 1981 and 1991 is as follows:

Planetary 58

Geosynchronous 37

Polar 12

Other 19

Total 126

Comparing these numbers with the totals in Table 2-10, it is seen that SEPS has

reduced the number of geosynchronous flights by 17, but that the number of

flights required to deliver intermediate and 55 degree payloads has increased

by seven for a net savings of only 10 flights. If Tug is allowed to deliver

2-61



NORTHROP SERVICES, INC. TR-1370

and retrieve intermediate payloads enroute to and from SEPS rendezvous, some

of the seven flights lost in the "other" category can be regained. This is

shown in Table 2-14. Delivery of intermediate payloads by the Tug on SEPS

flights saves an additional five flights.

Table 2-14. INTERMEDIATE ORBIT COMPARISON, NUMBER OF UPPER
STAGE FLIGHTS 1981-1991

CONFIGURATION UPPER STAGE FLIGHTS REQUIRED

INTERMEDIATE PLDS INTERMEDIATE PLDS
NOT DELIVERED DELIVERED

9.1 M BL 25 KW BL 126 121

9.1 M BL 50 KW 4158 SEC Isp 124 120

NOTES: 1. 90 day trip time limit per Zeg.
2. SEPS refueled 3 times.
3. Elliptical changeover orbits with radiation.
4. 3-D packaging without 3 up-1 down limit on Tug.

The shortest trip times are achieved if SEPS is refueled on every sortie

to take full advantage of higher average thrust-to-weight ratio resulting from

light propellant loads. However, in the WHATIF program which uses the history

of average propellant consumption per sortie to indicate the impending need to

refuel or retrieve SEPS, any attempt to refuel each sortie or even alternate

sorties will result in SEPS being strandedin geosynchronous orbit without

enough propellant to get down to changeover orbit for refueling or retrieval.

As it turns out, the number of refuelings allowed for each SEPS in its onorbit

lifetime do not significantly affect the number of Shuttle flights. In this

investigation, the refueling propellant loads were sized so that the allowed

number of refuelings (three), along with the original propellant load, would

provide roughly 20,000 hours of thruster operation. That this could not be

achieved exactly, was due to the average refueling criteria used in the WHATIF

program. SEPS were usually refueled when they still had several hundred

pounds of propellant left. Table 2-15 shows the refueling results.

With the 9.1 meter baseline Tug there is 9.1 meters of cargo space avail-

able for payloads in the Shuttle cargo bay. The number of payloads that can

be loaded in this volume depend on the kind of packaging allowed and the

limits that are imposed on the number of payloads that can be handled on one
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Table 2-15. NUMBER OF REFUELINGS COMPARISON, NUMBER OF UPPER

STAGE FLIGHTS, 1981-1991

CONFIGURATION UPPER STAGE FLIGHTS

NUMBER OF REFUELINGS

TUG SEPS 1 2 3

9.1M BL 25 KW BL 122 123 121

NOTES: 1. 90 day trip time limit per leg.

2. EZZiptical changeover orbits with radiation.

3. Intermediate orbital payloads are delivered on SEPS flights.

4. 3-D packaging without 3 up-1 down limit on Tug.

Tug flight. The reasons for restricting the number of payloads per flight 
and

their relationship to this study were discussed earlier. The effect on traffic

model results of three methods of payload packaging with the three up-one down

limit was investigated. These results are compared to three-dimensional

packaging without the payload limit in Table 2-16.

Table 2-16. PAYLOAD PACKAGING COMPARISON, NUMBER OF UPPER
STAGE FLIGHTS, 1981-1991

CONFIGURATION PACKAGING METHOD
END-TO-END SIDE-BY-SIDE 3-D 3-D

TUG SEPS 3 UP-1 DOWN 3 UP-1 DOWN 3 UP-1 DOWN NO LIMIT

9.1 M BL NO SEPS 156 150 150 136

9.1 M BL 25 KW BL 146 129 125 121

FLIGHTS SAVED 10 21 25 15

NOTES: 1. 90 day trip time limit per leg.
2. Elliptical changeover orbits with radiation.
3. SEPS refueled 3 times.
4. Intermediate payloads are delivered on SEPS flights.

The last column in Table 2-16 is the assumption used throughout this

study. This gives every advantage to the baseline STS without SEPS, and 
the

resulting fifteen Shuttle flights saved with SEPS in the geosynchronous mission

role is conservative. These operational trade studies have demonstrated the

advantages of removing the three up-one down restriction, three-dimensional

payload packaging, and delivery of intermediate payloads for both STS baseline

and STS with EO SEPS. These studies also showed that the 90-day trip time

limit was not so short as to cause a significant increase in the number of
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flights, at least for the baseline Tug. The type of changeover orbits and the

number of SEPS refuelings were seen to have a nearly inconsequential effect on

required Shuttle flights. These last two factors would reduce Shuttle flights

in a mission model that demanded fuller utilization of SEPS capability.

At this point in the study, investigations were narrowed to two STS

configurations: the 25 kw baseline SEPS and the 50 kw 4158 sec BL Isp SEPS,

both used with the 9.1 meter baseline Tug. In the remainder of this discussion,

it is assumed that:

1. Intermediate payloads are delivered on SEPS flights.

2. Elliptical changeover orbits are used.

3. SEPS are refueled three times.

4. Sortie trip times are limited to no longer than 90 days.

A system operational profile for the 25 kw SEPS was shown on Figure 2-19.

The operational profile graphically shows SEPS sorties by years. Each sortie

is represented by a V, the bottom of the V being the perigee altitude of the

changeover orbit and the width of the top being the sortie trip time. SEPS

launches and refuelings are indicated in the table at the bottom of Figure 2-19,

along with other STS activity as represented by the number of Shuttle flights,

Shuttle-Tug flights, and SEPS sorties. The horizontal lines at geosynchronous

altitude represent time between sorties when SEPS is idle in geosynchronous

orbit. That SEPS is under-utilized is apparent; not until 1989 is the traffic

volume great enough to keep it busy the full year. Figure 2-20 is a system

operational profile for the 50 kw SEPS. The shorter trip times achieved with

this configuration, coupled with the light traffic, result in even more SEPS

idle time than is the case with the 25 kw SEPS. The total weight of the

geosynchronous payloads carried on the down and up legs of each sortie are

shown on Figure 2-21. For the 25 kw SEPS and on Figure 2-22 for the 50 kw

SEPS. Sortie trip time and thruster beam power at the end of a sortie are

also shown on Figures 2-21 and 2-22 as they were affected by radiation damage

to the solar arrays. Since the beginning points of the beam power curves are

at the end of the first sortie, the radiation damage incurred on that sortie

causes the initial points to be less than 15.6 kw for the 25 kw system or

less than 37.5 kw for the 50 kw system.
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Typical changeover orbits for the 25 kw SEPS are drawn to scale on Figure

2-23. The two orbits shown represent the extremes of low-energy and high-

energy changeover orbits encountered in the traffic model. The high energy

orbit is the one for the third sortie in 1986, and the low energy 
is for the

recovery of SEPS No. 2 and the launch of refurbished SEPS No. 1 
at the atart

of 1990. The Tug AV's associated with these changeover orbits (as noted on

the figure) are less than those in the areas of most frequent 
SEPS operation

shown on Figure 2-16. Delivery of intermediate payloads were not allowed on

the SEPS sorties spotted on Figure 2-16. In general, the Tug AV required for

intermediate payloads results in lower changeover orbits. The question arises,

if SEPS can operate from these lower changeover orbits within allowed trip

times, why not take off the intermediate payloads and use the extra 
AV to

deliver more geosynchronous payloads? The answer is that the number and sizes

of payloads in a year do not afford the opportunity to pack enough geosynch-

ronous payloads on Tug to take full advantage of SEPS capability even 
with

three-dimensional packing. The WHATIF program's logic is inadequate here.

The heuristic approach of loading payloads on a flight as they are 
encountered

in a preordered list does not in all cases yield the best payload combinations.

It is felt that an alternative method in which all possible combinations 
of

the payloads to be delivered in a year are considered would 
result in a greater

average number of payloads per sortie and thus a smaller total number 
of

flights.

In order to cost the STS configurations and determine SEPS cost effective-

ness it was necessary to provide data on the number of each kind of flight

vehicle required in the traffic model. The number of IUSs, Tugs, Shuttle

launches, and SEPS sorties are contained in the traffic model summaries. 
The

traffic model summary for the 25 kw SEPS is shown in Table 2-17. Supplemental

information on the number of SEPS launches, retrievals, and refuelings in each

year and the number of geosynchronous payloads on SEPS 
sorties is also included.

Tables 2-18 and 2-19 are traffic model summaries for the 50 kw SEPS and 
the

baseline Tug without SEPS. Comparisons of the 25 kw traffic model (Table 2-

17) and the 50 kw traffic model (Table 2-18) with the traffic 
model without

SEPS (Table 2-19) for the years 1981 and 1982 show that SEPS did not save any
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YEAR 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 TOTAL

TOTAL STS FLIGHTS 27 25 38 40 48 47 42 40 40 46 44 437

IUS (EXPENDED) 4 2 8 14
NOT INCLUDING IUS FOR SEPS SORTIES

IUS - BII (EXPENDED) 2 2

TUG
NOT INCL.UDING TUG FOR SEPS SORTIES 9 9 7 8 3 6 6 5 53

TUG - BII 2 1 1 1 2 7

SHUTTLE FLIGHTS WITH PAYLOADS 2 2 2 2 2 10
REQUIRING ORBITAL ASSY WITH TUG

XTUG - BII (EXPENDED) 2 2 1 1 6

SEPS SORTIES 2 1 2 2 2 3 2 4 4 5 2 29

TOTAL UPPER STAGE FLIGHTS 8 3 10. 13 15 15 12 8 10 15 12 121

SEPS LAUNCHES 1 1 2 4

SEPS RETRIEVALS 1 1 2

SEPS REFUELINGS 1 1 1 1 1 1 1 1 8

GEOSYNCHRONOUS PAYLOADS ON SEPS 9 6 10 13 9 12 10 16 15 15 9 124

I
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Table 2-18. TRAFFIC MODEL SUMMARY, 9.1M TUG WITH 50 KW, 4158 Isp SEPS

YEAR 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 TOTAL

TOTAL STS FLIGHTS 26 25 38 40 48 47 43 40 40 44 44 435 1

IUS (EXPENDED) a
NOT INCLUDING IUS FOR SEPS SORTIES

IUS - BII (EXPENDED). 2 2

TUG TUG 9 8 8 4 7 6 4 55NOT INCLUDING TUG FOR SEPS SORTIES

TUG - BII 2 1 1 1 2 7

SHUTTLE FLIGHTS WITH PAYLOADS
REQUIRING ORBITAL ASSY WITH TUG

XTUG - BII (EXPENDED) 2 2 1 1 6

SEPS SORTIES 2 1 2 2 2 2 3 3 3 4 3 27

TOTAL UPPER STAGE FLIGHTS 7 3 10 13 15 15 13 8 10 14 12 120

SEPS LAUNCHES 1 1 1 3

SEPS RETRIEVALS 1 1 2

SEPS REFUELINGS 1 1 1 1 1 1 6

GOESYNCHRONOUS PAYLOADS ON SEPS 9 6 9 13 9 11 10 15 13 15 10 120

(J



z

0

Table 2-19. TRAFFIC MODEL SUMMARY, STS WITHOUT EO SEPS U

YEAR 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 TOTAL

TOTAL STS FLIGHTS 27 25 39 42 49 50- 44-- 42 42 47 45 452

IUS (EXPENDED) 6 3 11 20
NOT INCLUDING IUS FOR SEPS SORTIES

IUS - BII (EXPENDED) 2 2

TUG 13 12 13 12 8 12 13 8 91
NOT INCLUDING TUG FOR SEPS SORTIES

TUG - BII 2 1 1 1 2 7

SHUTTLE FLIGHTS WITH PAYLOADS 2 2 2 2 2 10
REQUIRING ORBITAL ASSY WITH TUG

XTUG - BII (EXPENDED) 2 2 1 1 6

SEPS SORTIES

TOTAL UPPER STAGE FLIGHTS 8 3 11 15 16 18 14 9 12 17 13 136

SEPS LAUNCHES

SEPS RETREIVALS'

SEPS REFUELINGS

GEOSYNCHRONOUS PAYLOADS ON SEPS
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flights in these years even though it flew several sorties. Launch of the

first SEPS could be deferred until the beginning of 1983 with no effect on the

number of flights in the 25 kw traffic model.

It was expected that when the orbital taxi mission role was combined with

the SEPS geosynchronous transport role that the only impact on the traffic

model would be earlier launches and retrievals of SEPS because of the time and

propellant used by the geosynchronous orbit maneuvers. The system operational

profiles for this case are shown on Figures 2-24 and 2-25. The width of the

top of the V's includes the time for SEPS to gather up payloads in geosynch-

ronous orbit for the downleg and the time to place payloads at their intended

longitudes on the upleg. A comparison of these figures with Figures 2-19 and

2-20 shows that the anticipated earlier launches do occur. Unfortunately,

for the 25 kw SEPS this places the launches that were in 1990 in the high

traffic year of 1989. This costs an extra SEPS sortie. This could have been

avoided by anticipating the need for an extra SEPS in 1989 and launching it in

1988. Because of the light traffic in 1988, this SEPS launch could have been

accommodated without an additional flight. In most years, SEPS is idle enough

of the time so that it can do the orbital taxi maneuvers without impacting the

traffic model. WHATIF program printouts of the 25 kw and 50 kw traffic models

that include the orbital taxi mission role are in Appendix A of Volume IV of

this report. These printouts show the payloads assigned to SEPS sorties, the

changeover orbits, SEPS propellant and power remaining at the end of each

sortie, and the up and down trip times. It will be noticed that some of these

trip times are greater than 90 days. The 90 day limit was applied only to the

transfer time to and from changeover orbit and does not include the additional

time required for onorbit maneuvers. Shuttle and Shuttle-Tug flights required

by the other missions.in the mission model are listed after the SEPS sorties.

Payloads assigned to these flights are shown along with propellant loadings

and AV requirements.
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Section III

MISSION OPERATIONS AND
SYSTEM REQUIREMENTS ANALYSIS

3.1 INTRODUCTION

This analysis, Task 2 of the contract work statement, had the following

objectives:

1. Determine events of critical flight and ground operations for the

SEPS (for earth orbital missions only)

2. Investigate flight and ground operations for the SEPS in payload

exchange, multiple payload delivery and retrieval, and payload

servicing

3. Identify operational modes and potential hardware concepts to imple-

ment objectives 1 and 2 and provide conceptual designs

4. Develop mission operations and ground services requirements

5. Define the characteristics of an earth orbital test flight for SEPS.

The basic concepts for operations and generation of the primary system

requirements were evolved from identification of the system characteristics and

functions required to:

* Execute SEPS multiple mission roles in a cost effective manner

* Provide a system for multiple payload transportation, deployment,

and retrieval that would simplify overall STS operations

* Provide for the servicing and maintenance of payloads in a way that

will not constrain the payload developers' options in fulfilling

payload functional requirements

* Provide for the retrieval of malfunctioning or totally incapacitated
satellites

* Provide for deployment of payloads from their high density passenger

configuration for transport in the Orbiter and on Tug to their in-

space operational configuration

* Provide for repackaging certain space configurations for retrieval

* Provide a SEPS system that has almost universal adaptability to the
assembly of large spacecraft and satellites that are transported to

earth orbit in modular form by separate flights of the STS.

Objectives 1, 2, and 4 comprise the principal elements of a design refer-

ence mission description. Therefore, NSI has elected to document the results

of the analysis in a separate volume: Volume III - "Design Reference Mission

and System Requirements."
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This section will summarize a representative sortie. At appropriate points,

capabilities beyond those required for the specific operation will be discussed.

Short subsections are devoted to related topics such as the STDN coverage, sun

illumination, circular versus elliptical changeover orbits, and times required

for taxi trips around geosynchronous orbit. Subsection 3.4 describes a recom-

mended approach to an earth orbital test flight.

3.2 MISSION ROLES AND CHARACTERISTIC PROFILES FOR SEPS WITH
THE STS

Section II described in considerable depth the SEPS roles in accomplishing

the reference mission model supplied by NASA for establishing the transporta-

tion cost effectiveness of SEPS. The predominant transportation roles as

indicated by Table 1-1 of the Summary and Section II are:

* Transportation of multiple payload packages to geosynchronous orbit

* Collection of payloads to be retrieved from geosynchronous orbit into

multiple payload packages that are transported down to a SEPS/Tug
changeover orbit for Tug/Orbiter return to earth

* Combined SEPS-Tug sorties to accomplish intermediate orbital payloads
in conjunction with delivery and retrieval of geosynchronous payloads.

For maximum efficiency of STS operations, all available space in the

Orbiter's cargo bay must be utilized. Full utilization must be reasonably con-

sistent with the desired launch schedule for each individual payload. When all

available cargo space is utilized, Tug usually does not have the capability to

deliver (or retrieve) the multiple payload package to geosynchronous orbit. Tug

therefore delivers them to a lower energy orbit where the payloads are trans-

ferred to SEPS. SEPS then supplies any deficiency in Tug transport capability,

delivering the individual payloads to their final mission destination.

Because SEPS always makes up any deficiency, Tug can transport payloads to

any intermediate orbits of less energy than the changeover orbit with SEPS while

enroute to the Tug/SEPS rendezvous. Payloads to any intermediate orbit requiring

greater energy than the Tug/SEPS rendezvous orbit will be delivered by SEPS.

Table 1-1 shows that for maximum STS transport efficiency, 93 percent of

all geosynchronous payload missions are accomplished by combined SEPS/Tug
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sorties; and 60 percent of all intermediate orbital missions are accomplished

in this manner.

Figure 1-4 depicts the number of payloads in Shuttle up and down cargo

manifests. A total of 83 percent of all individual up payloads requiring

upper stages for delivery were transported in multiple payload packages that

contained 4 or more payloads. A total of 75 percent of individual payloads

were returned to earth in multiple payload packages comprising 3 or more

individual payloads.

The study work statement had envisioned 4 distinct mission roles (MR) for

SEPS:

MR-1 IUS/Tug performance augmentation for payload delivery/retrieval
to geosynchronous orbit

MR-2 Onorbit multiple payload delivery/retrieval/servicing at geo-
synchronous orbit (orbit taxi)

MR-3 Low earth orbit missions just beyond the capability of Shuttle,
primarily in polar and sun synchronous orbits

MR-4 Planetary missions.

Earth orbital mission descriptions and profiles were to be defined for

further operations analysis, evolution of SEPS configuration concepts, and

development of ancillary mission equipment (General Purpose Mission Equipment

(GPME)) concepts. MR-4 planetary missions were investigated only to the extent

necessary to ensure that desirable features and capabilities that are added

for earth orbital functions would not degrade planetary mission capabilities.

As indicated in Sections I and II of this volume and in the foregoing

discussion, MR-1 and MR-2 type functions were typically required to merge into

sorties that combined both roles if STS effectiveness was to be maximized.

For this reason, other operational discussions in this volume and in Volume III

are generally related to representative SEPS/Tug sorties rather than to

mission roles. Some specific missions and phases of missions are discussed

in greater detail to illustrate desirable characteristics of the recommended

SEPS configuration or of the recommended STS GPME.
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Low earth orbital missions were investigated only to establish SEPS basic

capabilities. SEPS can accomplish these missions; however, there appears to

be little transportation cost effectiveness gain compared to accomplishing

them by use of Shuttle plus the addition of a standard chemical propulsion

package to the payloads.

3.2.1 System Operational Profile with the Complete Mission Model

A total STS with SEPS System Operational Profile to accomplish the ref-

erence mission model was shown in Figure 2-24 and discussed in some detail.

A SEPS mission cycle is defined as the cycle of operations beginning with the

SEPS removal from inventory storage and continuing through its onorbit opera-

tions until it is retrieved for refurbishment and returned to inventory. In

the cost effectiveness analysis, it was assumed that refurbishment would occur

at about 20,000 hours of thruster operation. On that basis, 2 1/2 SEPS mission

cycles were required to complete the mission model. Present technology indi-

cates that the expected life of SEPS thrusters that will be in operation in the

1980's will probably be 50,000 or more hours.

Figure 2-24 shows that 2 operational SEPS and 1 spare are adequate to

accomplish the mission model from 1981 through 1991. SEPS No. 1 is launched

in 1981 and remains in orbit accomplishing 10 sorties before it is retrieved

with about 20,000 hours on the thrusters in 1986. SEPS No. 1 has its mercury

and ACS N2H4 replenished three times during this mission cycle.

Figure 2-24 is somewhat misleading in that the sloped ascent and descent

lines indicating elapsed time for the ascent or descent leg of a sortie also

include the time for taxiing around geosynchronous orbit to collect retrieved

payloads from, or to deploy individual payloads to, their specific mission

longitudes. Times to travel to a satellite and service it when that is a des-

ignated function of a specific sortie are also parts of the ascent line. The

horizontal lines at the geosynchronous altitude represent the time SEPS is idle

on geosynchronous orbit. SEPS No. 1 is idle for about 50 percent of the time

onorbit. Only in the last few years, 1988-1991, is one onorbit SEPS fully

utilized.
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On the Tug sortie that retrieves SEPS No. 1, SEPS No. 2 is deployed with

its initial payload set. SEPS No. 1 is refurbished and returned to inventory.

SEPS No. 2 stays in orbit from 1986 to 1989, accomplishing 10 sorties. Be-

cause of a groundrule that required every individual payload to be launched

in its specified year, the spare SEPS No. 3 was launched in late 1989 to

accomplish a sortie that SEPS No. 2 could not complete in that year.

On the Shuttle flight that retrieved SEPS No. 2, refurbished No. 1 was

carried to changeover orbit to begin its mission cycle. SEPS No. 2 is refur-

bished to become the spare inventory item. Except for three sorties in 1990/

1991, SEPS. No. 1 is idle in geosynchronous orbit. Mission model requirements

do not demand its services. SEPS No. 3 accomplishes all remaining sorties to

complete the reference mission model.

Volume IV, "Traffic Model and Flight Schedule Analysis Techniques and

Computer Programs," contains a computer printout giving the sequence of flights

depicted in the Systems Operational Profile (Figure 2-24) just described. 
The

cargo manifests for each flight are given with a description of individual pay-

loads and their destinations. Manifests are also provided for the flights that

did not involve SEPS to indicate the level of other STS activity. This other

Shuttle and Tug activity proceeding concurrently with Tug/SEPS sorties was a

principal reason for NSI's emphasis on evolving GPME that would simplify Tug-

Shuttle operations for multiple payload operations even when SEPS was not in-

volved in a sortie. The GPME concepts evolved (described in Sections IV and

V) are designed to the extent practicable to allow launch preparation activi-

ties of Shuttle, Tug, and the multiple payload package to be carried out inde-

pendently.

3.2.2 Reference Sortie Profile

An arbitrary reference sortie profile was established that contained one

example of each function that SEPS would be required to execute in any earth

orbital role. At significant phases of this reference sortie, the envelope

of capabilities or range of required functions for other similar phases will

be discussed.
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The general functional flow of an earth orbital SEPS mission cycle is

shown on Figure 3-1. This flow.is discussed in some detail in Volume III.
Recall that SEPS remains in orbit and executes 10 or more sorties by rendez-

vous with Tug in a changeover orbit before it is returned to earth.

Section II of this volume describes the advantages of elliptical change-
over orbits in terms of trip time savings. Figure 3-2 shows the range of

elliptical orbits used in accomplishing the complete mission model. There

were very few of the low energy changeover orbits required in accomplishment

of the mission model during the years 1981-1991, so that radiation damage to
SEPS solar arrays, while significant, was not severe.

In order to develop a reference sortie profile, the following payload

manifest was used. This manifest does not actually occur in the traffic

model. It is a synthesized composite to illustrate the general Tug-SEPS

sortie.

SORTIE PAYLOAD MANIFEST - SHUTTLE LAUNCH: MARCH 1986

Payload ID Weight LengthL Apogee Perigee Inc
Kg Dia.(M) Longitude Alt - Km Alt - Km Deg

Intermediate Up Payloads

EOP-9 414 3.1/1.77 -- 2,000 1,000 28.0

Geosynch Up Payloads

NN/D-1 2,039 3.7/2.5 30"W 35,785 35,785 0

NN/D-4 645 3.7/3.1 162
0
W 35,785 35,785 0

NN/D-9 366 3.1/1.8 135*E 35,785 35,785 0

Geosynch Down Payloads

EO-4A 1,359 3.3/2.6 100*W 35,785 35,785 0
NN/D-10 347 3.1/1.8 80

0
W 35,785 35,785 0

Intermediate Down Payloads

AST-1A 291 3.7/.8 -- 550 550 28.5

The changeover orbit is generally chosen for compatibility with inter-

mediate orbital payload requirements and to minimize SEPS transfer time. The

changeover orbit used as the timeline base has the following characteristics:
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apogee altitude - 48,475 km

perigee altitude - 17,203 km

inclination - 4.7 deg

The Shuttle, Tug, and SEPS characteristics are:

Shuttle

Payload at 296 km x 28.5 degrees - 28,656 Kg (63,100 pounds)

Maximum Down Payload - 14,532 Kg (32,000 pounds)

Tug

Empty Weight - 2,750 Kg (6,055 pounds) including flight GPME

Usable Propellant - 23,035 Kg (50,724 pounds)

Specific Impulse - 456.5 sec

Thrust - 66,735 N (15,000 pounds)

SEPS

Beam Power (undegraded) - 15.67 kw

Specific Impulse - 2,940 sec

Empty Weight - 1,243 Kg (2,740 pounds)

Propellant Capacity - 771 Kg (1,700 pounds)

Table 3-1 is a listing of event times for the sortie. It includes con-

tingency times allowing several opportunities for each chemical stage burn.

The sortie events may be summarized as follows.

The master scheduling function has established the deployment dates of

the up payload set and the retrieval dates for those payloads being retrieved

on a scheduled basis a year or more in advance of the sortie. The specific,

detailed mission plan for the sortie can respond to retrieval requirements

caused by the malfunction of a payload within a few days of the time the last

planned retrieval payload is collected in geosynchronous orbit just before SEPS

.begins its descent trip to rendezvous with Tug. Because of SEPS' high AV capa-

bility, the mission profile can be replanned for SEPS to return to geosynchronous

orbit, even after the descent maneuver is in progress, to retrieve an additional

high priority satellite that may have failed after descent began.
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Table 3-1. EVENT TIMES ON REFERENCE TRAJECTORY PROFILE

MISSION TIME FROM MASS PROPELLANT

TIME SHUTTLE EVENT (Kg) MASS BURN TIME

(Days) LAUNCH (Kg)
POWER

SEPS DESCENT (kw)

0.00 -38.9 days SEPS docked with payload at 80*W Longitude 2,194 604 15.3

Longitude shift (20
0
W) 2.3 days

2.30 -36.6 days SEPS docked with payload at 100*W Longitude 3,546 597 15.3

Descent to changeover orbit 36.6 days

38.90 0.0 days SEPS and payloads.at changeover orbit 3,430 481 15.2

SHUTTLE ASCENT

38.90 0.0 hours Shuttle Launch

39.02 2.9 hours Orbiter injection on park orbit
over 1540 West Longitude

AV
TUG ASCENT (m/sec)

39.02 , 2.9 hours Start coast to descend node (1.32 revs) 28,622 22,409

39.10 4.9 hours Initiate transfer to 540 n mi (AVl) 28,622 22,409 80.1 sec 191.

39.14 5.7 hours Inject on 540 x 1080 x 28.00 orbit (AV2) 24,907 18,695 165.0 sec 421.

Drop intermediate payload and coast to
ascend node (1 rev) 24,492 18,695

39.22 7.6 hours Inject on phasing orbit (AV3 ) 18,568 12,770 391.0 sec 1219.

Coast to ascend node (1 rev)

39.39 11.8 hours Initiate transfer to changeover apogee (AV4) 18,568 12,770 240.0 sec 960.

39.70 19.3 hours Inject on changeover orbit (AV5) 11,828 6,030 204.8 sec 1026.

40.15 30.0 hours Rendezvous with SEPS (1/2 rev) 11,828 6,030

TUG DESCENT

40.36 35.0 hours Interchange Tug and SEPS payloads and coast 10,482 6,030
to descend node (1/2 rev)

40.60 40.8 hours Initiate transfer to 297 n mi x 28.50 (AV6 ) 10,482 6,030 147.5 sec 1056.

40.91 48.3 hours Inject on phasing orbit (AV7) 6,233 1,780 132.9 sec 1232.

Coast to ascend node (1 rev) 6,233 1,780

41.05 51.5 hours Inject on 297 n mi x 28.50 orbit (AV8) 4,652 200 104.4 sec 1288.

41.12 53.1 hours Rendezvous with intermediate payload (1 rev) 4,652 200
Retrieve intermediate payload 4,942 200
Coast to phase with orbiter (10-1/2 revs)

41.82 69.9 hours Initiate transfer to Shuttle orbit (AVg) 4,942 200 5.2 sec 71.

41.85 70.7 hours Inject on Shuttle orbit (AV10 ) 4,785 42 5.2 sec 72.

SHUTTLE DESCENT

41.91 72.2 hours Rendezvous with Tug (1 rev)
Deorbit

POWER
SEPS ASCENT (kw)

40.36 35.0 hours Begin ascent from changeover orbit 4,776 481 15.2

Ascent to geosynchronous orbit 50.4 days

90.76 51.9 days SEPS and payloads in geosynchronous orbit 4,628 334 15.0

at 300 West Longitude
Deploy payloads at 300 West Longitude 2,588 334

Longitude shift (132* West) 6.5 days

97.26 58.4 days SEPS and payloads at 1620 West Longitude 2,567 313 15.0

Deploy payload at 1620 West Longitude 1,922 313

Longitude shift (630 West) 3.9 days

101.16 62.3 days SEPS and payload at 1350 East Longitude 1,910 301 15.0

Deploy payload at 1350 East Longitude 1,544 301
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In the reference sortie illustrated in Table 3-1, at the planned start

time 39 days before Shuttle will be launched with Tug, SEPS proceeds to retrieve

the first down payload.

Because of SEPS' low acceleration it does not use phasing orbits, but

is started on trajectory profiles so that continuous thrusting for the minimum

length of time will bring it to the desired rendezvous or payload deployment

point. The terminal phase of SEPS' approach to a target point for deployment

of a payload, or to a rendezvous, is just an extension of the cruise phase as

indicated on Figure 3-3. For sunlit targets, the SEPS, with information from

the ground as to target payload position, can acquire the target at distances

up to 7,223 kilometers and begin path adjustments. Figure 3-3a shows the rel-

ative motion of SEPS approaching a target geosynchronous payload when only the

ion thrusters are used in order to conserve ACS propellants. Times shown are

times before station alongside the payload at relative velocity 0. The arrows

indicate the direction of thrust. Figure 3-3b shows added details of the last

few hours.

The SEPS flight control center would not need to be fully manned prior to

about 2 hours before payload deployment or retrieval was to begin. Conversely,

if it is desired to compress the last 6 hours of the operation, ACS thrusters

can be utilized. These thrusters, combined for additive thrust in the same

direction as the ion system, provide about 100 times the acceleration of the

ion system. ACS-produced acceleration is 0.06 to 0.3 m/sec2 depending on pay-

load mass.

The manner in which the manipulator system grasps the payload and places

it on a diaphragm on the SEPS transport mast is described in Sections IV and

V of this volume.

After collecting the second.payload, SEPS cruises to the changeover orbit

to meet Tug. This consumes about 36 days for the reference profile. After

the cruise phase has been initiated, the SEPSOC flight control is manned only

one day each week for a status check on SEPS trajectory progress and on the

functional status of subsystems. SEPS has an autonomous navigation and guid-

ance system. The navigation system operates on the basis of establishing a
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continuing series of SEPS positions from data collected by onboard sensors.

Errors are, therefore, not cumulative. The expected system accuracy is posi-

tion within 1 km and velocity within 0.1 m/sec. The guidance computer with

onboard software determines the thruster pointing directions to maintain the

position track along the preplanned profile.

Since STDN tracking and ground computation of SEPS position are for

status check only, and are not required as a part of the nominal path-keeping

navigation and guidance function, this weekly status check can be shifted to

accommodate other higher priority activities of STDN or the SEPS program

support group when and if necessary.

Since SEPS has propulsion capability and can be planned (commanded) to be

at a specific point in the changeover orbit at a specific time, the Shuttle

and Tug ascent maneuvers can be planned for nominal execution with a minimum

of phasing orbit time delays. This can minimize the time Shuttle and Tug must

be in orbit for a sortie. Figures 3-4 and 3-5.are general illustrations of the

trajectory profiles that may be used to allow Tug to deliver and retrieve an

intermediate orbit payload enroute to and from the payload changeover orbit

with SEPS. Some phasing orbits not normally required are shown in the figures.

The representative times are given in Table 3-1. The intermediate orbital

payload delivery and retrievals have been shown in 28.50 inclination orbits.

There is nothing that restricts these orbits to a 28.50 inclination, and

different payloads may be deployed and retrieved at different orbits enroute.

As plane change requirements demanded of Tug for multiple intermediate orbit

retrieval increase, less demanding changeover orbits of lower altitude must be

planned. In order to avoid radiation damage, operational choices will be

limited when changeover orbits approach circular orbits near the intense

radiation zone of the Van Allen belt.

At the ascending node of the last intermediate orbit, the Tug burns to

initiate transfer to apogee of changeover orbit and accomplish the required

plane change. If the mission is properly planned, a phasing orbit will not be

necessary for Tug rendezvous with SEPS.
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Tug burns at apogee of transfer orbit to complete plane change and inject

on changeover orbit. If the Tug navigation and guidance system is operating

normally, Tug and SEPS will be within active LADAR range. Either vehicle can

be the active rendezvous partner. After final closure and docking of Tug with

SEPS, up payloads on Tug are exchanged with down payloads on SEPS.

If an intermediate orbit is to be retrieved during Tug's return to Orbiter,

the Tug burns at apogee of changeover orbit to a phasing orbit for retrieval

of intermediate payloads and then burns to rendezvous with the retrieval

payload. This requires that the line of nodes of the intermediate orbit be

aligned with the nodal line of the changeover orbit. This can be arranged

for one intermediate orbit. In general it cannot be expected that the line

of nodes of several intermediate orbits will be coincident. In the case of

an elliptical intermediate orbit, it is also necessary that the major axis

lie in the line of nodes; any other orientation of either the nodes or major

axis requires excessive Tug AV. Multiple intermediate orbit retrievals by Tug

will occur infrequently.

After retrieval of the intermediate payload, Tug burns to transfer to the

Shuttle parking orbit. A phasing orbit maneuver by either Shuttle or Tug may

be required. Shuttle returns to ground with Tug and retrieved payloads.

Following exchange of payloads with Tug, SEPS begins transfer from change-

over orbit to geosynchronous orbit. After 50 days, SEPS deploys the first up

payload in geosynchronous orbit. In geosynchronous orbit, SEPS assumes an

orbital taxi role and spaces the individual payloads around.the orbit at

their intended longitudes. SEPS takes 4 to 7 days between deployment of

payloads in geosynchronous orbit if ion propulsion is the only thrusting

used. SEPS is then free to begin the next sortie.

Detailed discussions of the mechanics of payload transfers and other

related subjects are contained in other sections of this volume; therefore,

they were omitted in the above discussions.
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Descriptions of SEPS self-servicing and its potential for self-maintenance

capability along with payload handling descriptions indicate the near univer-

sal adaptability of the SEPS manipulator systems to onorbit servicing.

3.3 RELATED MISSION PLANNING AND ENVIRONMENTAL CONSIDERATIONS

3.3.1 Comparison of Tug Ascent and Descent Profiles for Three Major Classes of Sortie Profiles

Basically all of the Tug profiles fit into three cases:

1. Tug has sufficient performance capability to carry the multiple

payload package to geosynchronous orbit. SEPS taxies individual

payloads to their specific mission locations.

2. The changeover orbit is an inclined circular orbit.

3. The changeover orbit is an inclined elliptical orbit.

In all cases, the Tug must ascend from a low-earth parking orbit to a

target orbit (either geosynchronous or changeover), rendezvous with the target,

perform specified operations while coasting in the target orbit, return to the

parking orbit and rendezvous with the waiting Shuttle orbiter. For the geo-

synchronous SEPS mission, the target orbit will always have an inclination

less than that of the parking orbit. Independent of the type of target orbit,

the flight profile (beginning with the ignition of the Tug rocket engine in

the parking orbit) will probably consist of six major burns, with additional

terminal maneuvers performed during each rendezvous and short correction

burns added to adjust the apogees or perigees of the phasing orbits and

transfer conics. Only the major burns are considered in this discussion.

3.3.1.1 Basic Flight Profiles

Three burns are used in the ascent portion of the flight; Figure 3-6

illustrates the ascent sequence.

For maximum efficiency, each burn is performed at the line of inter-

section between the parking and target orbital planes. The length of the

first burn is used to adjust the size (and thus, the period) of the up-

phasing orbit so that the Tug will arrive at the apogee of its up-transfer

conic at the same time as the target. The length of the second burn must
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provide the precise AV needed to produce an up-transfer conic with an apogee

altitude equal to the altitude of the target orbit. For gross adjustments

in the rendezvous time, the Tug may need to coast for one or more additional

revolutions in its parking orbit before initiating the first burn.

BURN 3

TARGET
ORBITAL-PLANE
LINE OF INTERSECTION
(COMMON TO ALL ORBITS)

TARGET ORBIT

'UP-TRANSFER CONIC

UP-PHASING ORBIT

PARKING ORBIT

BURNS 1 & 2

Figure 3-6. ASCENT PROFILE

For maximum efficiency, some amount of the required plane change is made

on each burn. In the practical cases of interest here, the target-orbit

altitudes are high enough so that the entire plane change can be made at the

apogee of the transfer conic (third burn on ascent) with a negligible increase

in total AV. It should be noted that the inclusion of an up-phasing orbit

in the flight profile will reduce the gravity losses by splitting into two

parts the burn required to obtain target-orbit altitude. The optimum split

may not produce a phasing orbit with the desired period; however, the increase

in losses produced by a nonoptimum split are negligible in practical cases.

It is important that the nominal period of the up-phasing orbit be at least

twice the period of the parking orbit. Then, in the event the first Tug

burn cannot be made at the nominal time, the Tug can simply coast for one

revolution in the parking orbit and reduce the up-phasing orbit.
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When the target orbit is elliptical, its line of apsides must be

aligned* with the orbital plane's line of intersection, and the rendezvous

must occur at the apogee of the target orbit. In this case, a rendezvous

opportunity occurs only once per target-orbit period, at the time the

target reaches its apogee. The AV penalty for rendezvousing at the perigee

of the target orbit is excessive for target orbits of substantial eccentric-

ity, particularly when a plane change is required. When the target orbit

is circular, there exists a rendezvous opportunity every half period, when

the target crosses the orbital-plane's line of intersection. This is an

advantage for the circular target orbit as regards the operational flexi-

bility of the Tug's flight profile. In general, however, circular target

orbits are less efficient and therefore require more total sortie time

than elliptical orbits.

As in the case for the ascent, three major burns are used in the

descent; Figure 3-7 illustrates the descent sequence.

ORBITAL-PLANE
LINE OF INTERSECTION

BUN 4 TARGET
BURN ORBIT

DOWN-TRANSFER _ '
CONIC /

DOWN-PHASING ORBIT I

PARKING ORBIT

BURNS 5 & 6

Figure 3-7. DESCENT PROFILE

*Throughout the discussion the conditions set forth are those necessary for a

minimum Tug AV. Deviations from these ideal conditions produce penalties
which will be discussed later.

3-19



NORTHROP SERVICES, INC. TR-1370

For the descent, the total plane change can be made on burn No. 4.

The length of the fifth burn is used to produce a down-phasing orbit so

that the Tug will return to the perigee of this phasing orbit at the same

time as the waiting orbiter. The sixth burn accomplishes the final rendez-

vous.

When the target orbit is substantially eccentric, the deboost burn (burn

No. 4) should only be made at the apogee of the target orbit. Therefore,

unless the Tug can return immediately after rendezvousing with the target, it

must coast for an entire period in the target orbit until it returns again to

the apogee. When the target orbit is circular, a deboost opportunity occurs

every half-period.

It should be noted that, due to the earth's oblateness, the orbits

experience periodic and secular perturbations which alter their shapes and

relative orientations. The magnitudes of these perturbations must be consid-

ered in the definitions of operational trajectories, but they are small enough

to have no significant effect on the comparisons being made in this discus-

sion.

3.3.1.2 Launch Opportunities and Windows

Because of the unique characteristics of the geosynchronous target

orbit, there is a continuum of Shuttle launch opportunities for this orbit.

Since the angular rate of the target in a geosynchronous orbit is equal to

the earth's rotational rate, and since the inclination of the geosynchronous

orbit is zero, the relative orientations of the Tug's parking orbit and the

phasing relationship of the Tug and target will be identical regardless of

the launch time.* The Tug must, however, wait in the orbiter parking orbit

or a phasing orbit for periods up to 14 hours depending upon the geosynch-

ronous delivery longitude as illustrated in Figure 3-8.

*It is assumed here that the shuttle ascent trajectory is always nominal and
independent of launch time.
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Figure 3-8. LEO STAY TIME VERSUS DELIVERY LONGITUDE IN GEOSYNCHRONOUS ORBIT

In order to make quantitative comparisons, two inclined changeover

target orbits (one elliptical and one circular) have been selected from a

geosynchronous SEPS System Operational Profile, defined by NSI for the 1981-

1991 time period. Both changeover orbits were selected as orbits which could

be reached by the Tug with a one-way AV of 3390 meters/second. The elliptical

orbit was selected from a family of unconstrained changeover orbits as the

one requiring the minimum SEPS AV, and the circular orbit was selected from a

family of constrained circular changeover orbits as the one requiring the

minimum SEPS AV. Basic data concerning these two changeover orbits (as well

as the geosynchronous target orbit and the parking orbit) are contained in

Table 3-2.

Since both changeover orbits have nonzero inclinations, there is a AV

penalty for launching at a nonoptimum time. In each case, there is one launch

opportunity in each 24-hour period when the minimum AV can be attained. The

basic reason for the AV penalties at other launch times is the increase which

3-21



NORTHROP SERVICES, INC. TR-1370

Table 3-2. ORBITAL CHARACTERISTICS

TUG
CIRCULAR ELLIPTICAL PARKING
CHANGEOVER CHANGEOVER ORBITORBIT

Apogee Radius 42,164 km 20,000 km 59,332 km 6674 km

Perigee Radius 42,164 km 20,000 km 16,723 km 6674 km

Inclination 0.00 deg 13.00 deg 8.22 deg 28.5 deg

2-Way Tug AV
(parking orbit
to/from target) 8468 m/s 6780 m/s 6780 m/s --

2-Way SEPS AV
(target to/from
geosynchronous) 0 3640 m/s 2720 m/s --

Orbital Period 23.93 hours 7.82 hours 20.50 hours 1.51 hours

results in the angle between the planes of the parking orbit and target

orbit. For elliptical changeover orbits, there is an additional effect which

adds to the penalty; the line of intersection of the parking and changeover

orbital planes rotates, forcing the rendezvous with the target to occur at a

point other than the apogee of the target orbit. Figure 3-9 illustrates the

relevant parameters of the launch geometry.

The parking orbit nodal shift, AQ, is related to a launch time delay, AtL

(in hours) as follows:

An = 15.04 AtL degrees

The total angle between the parking orbit and changeover orbit planes, a,

is related to AQ as follows:

-1a = cos -l[cos i cos i ) + (sin i sin i ) cosAQ]

where i and i are the inclinations of the changeover and parking orbits,c p

respectively.
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ROTATION

TARGET-ORBIT PLANE
(SPACE-FIXED)

PARKING-ORBIT PLANE
FOR DELAYED LAUNCH

PLANE PARKING-ORBIT PLANE
FOR NOMINAL LAUNCH

Figure 3-9. EFFECT OF DELAYED LAUNCH ON ORBITAL-PLANE GEOMETRIES

The rotation of the line of intersection between the parking orbit and

changeover orbit planes, C, (measured in the plane of the changeover orbit)

is related to AQ as follows:

S=cos1  1 [cos i sin i ) cosMA - (sin i cos i )]
sinco c p c p

Table 3-3 gives AQ, a, and C for several launch time delays for each

changeover orbit.

Table 3-3. EFFECTS OF LAUNCH DELAY

CIRCULAR ELLIPTICAL
CHANGEOVER ORBIT CHANGEOVER ORBIT
(i = 13 deg) (i = 8.22 deg)

AtL An a a

(hr) (deg) (deg) (deg) (deg) (deg)

0 0 15.50 0 20.28 0
0.5 7.52 15.70 12.78 20.38 10.39
1.0 15.04 16.28 25.99 20.66 20.52
1.5 22.56 17.18 38.14 21.12 30.45
2.0 30.08 18.35 49.30 21.75 40.21
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The forward rotation of the orbital plane intersection line for late

launches provides some phasing compensation; for the elliptical changeover

orbit there is actually an overcompensation, and when the launch is delayed

the period of the up-phasing orbit must be increased. For launch time delays

of up to 2 hours, there are no phasing problems for either of the changeover

orbits which cannot be corrected by the adjustment of the up-phasing orbit's

period.

Figure 3-10 gives a comparison of the AV penalties incurred for off-

nominal launch times for the two example changeover orbits.

MINIMUM TUG AV (2-WAY)= 6780 METERS/SECOND

z
o 200

PARKING ORBIT
cc 160 x 160 N. MI.
U 28.50 INCLINATION

ELLIPTICAL CHANGEOVER

_J

S100- CIRCULAR CHANGEOVER

0
0 0.5 1.0 1.5

LAUNCH DELAY-HOURS

Figure 3-10. LAUNCH DELAY PENALTIES FOR INCLINED CHANGEOVER ORBITS

Although some small portion of AV penalties shown on Figure 3-10 is due

to a change in the phasing relationships caused by a late launch, the phasing

adjustments (which have been discussed) reduce this portion to an insignifi-

cant amount.

3.3.1.3 Time Away from the Shuttle Orbiter

A small advantage of the example circular changeover orbit is that the

Tug is away from the Shuttle orbiter for a shorter period of time. If the

renLdezvous maneuvers and orbUital operaLtons whicnh the Tug must perform in the

circular changeover orbit require no more than 3.9 hours, it can make the

deboost burn one-half period after it has injected into the changeover orbit.

3-24



NORTHROP SERVICES, INC. TR-1370

Assuming that the up-phasing and down-phasing orbital periods are about 3

hours each, the Tug would be away from the Shuttle orbiter a total of only

about 14 hours. For the example elliptical changeover orbit, however, the Tug

must spend about 20.5 hours in the changeover orbit and will be away from the

Shuttle orbiter for a total of about 43 hours.

This difference in time away from the orbiter of 29 hours is a distinct

advantage of the circular changeover orbit. To reduce this difference, the

Tug would have to initiate its deboost burn as soon as. possible from the

elliptical changeover orbit and take the AV penalty associated with a 
burn that

is not made on the line of intersection of the changeover and parking orbital

planes. For example, a wait in the elliptical changeover orbit of 2 hours would

result in a AV penalty of about 500 meters/second. To keep the penalty this

small, an additional burn would have to be inserted into the profile. Fig-

ure 3-11 illustrates the geometry produced by the off-nominal deboost burn.

ADDITIONAL PLANE-CHANGE BURN
AT THIS POINT (AV Z 500 M/S)

ATUAL OrSCD.,

LINE OF INTERSECTION BETWEEN
ACTUAL DESCENT CONIC-AND
PARKING-ORBIT PLANES

POINT (2 HOURS
AFTER NOMINAL
POINT)

NOMINAL
DEBOOST
POINT

CHANGEOVER
ORBIT PLANE

Figure 3-11. EFFECT OF OFF-NOMINAL DEBOOST ON ORBITAL-PLANE GEOMETRIES

When the target orbit is the geosynchronous orbit (SEPS in geosynchronous

taxi mode only), the Tug can deboost after remaining in the target orbit only

one-half period (about 12 hours). In this case, the total time away from the

Shuttle orbiter is about 28.5 hours (about half-way between the times for the
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elliptical and circular changeover orbits) plus up to 14 additional hours for

some target longitudes.

It should be pointed out that the particular examples chosen for the

circular and elliptical changeover orbits result in the maximum difference in

the Tug-time away from the orbiter. For those missions requiring higher Tug

AV's, the periods of both the optimum elliptical changeover orbits and the

constrained circular changeover orbits become longer and move closer together.

In that period (that is, when SEPS is a taxi only), the elliptical changeover

orbit becomes circular and equal to the circular changeover orbit, both being

geosynchronous. In a particular case, the selection of the optimum (elliptical)

changeover orbit or the constrained circular changeover orbit would be made

by trading the increased Tug sortie time against the reduction in the required

SEPS AV. Figure 3-12 shows these parameters as a function of the Tug two-way

AV requirement. For any given Tug AV, Figure 3-12 shows the cost in mission

time, and the reduction in SEPS AV and SEPS thrust time to be obtained by

opting for an unconstrained elliptical changeover orbit instead of a circular

changeover orbit. In a theoretical sense, as shown on Figure 3-12, when both

orbits become geosynchronous, there is a 12-hour difference in Tug mission

time because the Tug is coasting for an entire revolution in the elliptical

changeover orbits and only a half revolution in the circular changeover orbits.

In the practical sense, because both orbits are identical, Tug could retrogress

at the half revolution point.

30SES SAVINGS 50

800 40

MISSION-TIME INCREASE GEOSYNCHRONOUS z~

S 0 -\ (SEPS NOT REQUIRED) -600

z~-11
3- \ -9 2 0

'6800 7200 7600 8000 8400

TUG 2,WAY IV -METERSSECOND

Figure 3-12. MISSION-TIME INCREASE AND SEPS SAVINGS (WITH ELLIPTICAL CHANGE-
OVER ORBITS)
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3.3.2 SEPS Potential for Operation Into Intense Radiation Zones of the Van Allen Belt

As an example of SEPS capabilities in this area, NSI investigated the

accomplishment of the mission model with a recoverable Interim Upper Stage

(IUS), no Tug, and a SEPS with radiation resistant, self-annealing solar cells.

This results in a requirement for elliptical changeover orbits that have peri-

gees deep in the high intensity zone of the Van Allen belt. The results of

the analysis indicated an STS comprised of Shuttle, a recoverable IUS, and a

100 kw SEPS could accomplish the mission model with only 10 more Shuttle

flights than an STS comprised of Shuttle, expendable IUS, and Tug.

As an alternate to radiation resistant cells, the effect on trip time

of rolling up the array for protection in the high intensity radiation zones

was investigated by NSI in a related study. For this analysis, power avail-

able to the SEPS thruster subsystems at the beginning of the sorties was 21 kw.

Radiation damage effects are included.

When SEPS operates between low-energy elliptic changeover orbits and

geosynchronous orbit (GSO) the SEPS thrust can be terminated at low altitudes

where it is relatively ineffective in changing the orbit's size and inclina-

tion. The total SEPS AV requirement for a transfer between ESO and a speci-

fied changeover orbit will thereby be reduced. When the SEPS thrusters are

turned off, the solar panels can be rolled in to prevent the substantial

radiation damage which would occur at the low altitudes. With reduced radia-

tion damage, the SEPS thrust remains high; and the total mission time is

actually reduced from that obtained when there are no thrust terminations

or solar panel roll-ins.

The Simplex version of the MOLTOP computer program (with the SSL radiation

model) has been used to determine the optimum changeover orbits and the asso-

ciated SEPS descent trajectories (for a typical SEPS T/M) for a range of

chemical stage AV capabilities. At radii below 20,000 km, SEPS thrust termina-

tion and solar panel roll-in were simulated. The starting orbit for the chem-

ical stage was a 220 nautical mile, 28.5 degree-inclined Shuttle orbit. The
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chemical-stage AV capability (one-way) was varied between 2400 and 3000 meters/

second. The SEPS started in GSO with 13.44 kw of beam power, a specific impulse

of 3000 seconds, an undamaged solar array, and a thrust/mass of 2.0435 x 10
-

m/s2

Figures 3-13 through 3-16 show several mission parameters versus chemical

stage AV. Figure 3-13 shows the optimum changeover orbit parameter values.

Figure 3-14 shows the SEPS AV's and times required for the descents from GSO to

the optimum changeover orbits. Figure 3-15 shows the number of SEPS thrust

terminations required for the descents to the optimum changeover orbits. Figure

3-16 shows the percentage reductions in SEPS exhaust power caused by radiation

damage during the descents.

The SEPS AV and mission time values in Figure 3-14 can be used to estimate

the SEPS trajectory parameters where the SEPS has a different T/M than the one

used in the MOLTOP simulations, and where an ascent trajectory is desired instead

of a descent trajectory. A particular transfer of interest is the delivery of a

3857-kg payload to GSO from a 220 nautical mile, 28.5-degree inclined Shuttle

orbit. The chemical stage is a transtage having an inert mass of 2117 kg, a

maximum propellant usage of 14586 kg, and a specific impulse of 308.2 seconds.

After taking the payload to the optimum changeover orbit, the transtage must

return to the Shuttle orbit. The transtage AV requirement for this mission is

computed to be 2565 meters/second. For this AV, Figure 3-13 shows the optimum

changeover orbit to have an apogee radius of 44,000 km, a perigee radius of

7,300 km, and an inclination of 22.75 degrees. The SEPS which meets the tran-

stage in the changeover orbit has to have enough propellant to deliver the

payload to GSO and to return to some changeover orbit for refueling. This SEPS

will also have some radiation damage at the time it takes the payload from the

transtage. Typical estimates for the SEPS propellant loading and percentage

reduction in undamaged exhaust power are 528 kg and 10 percent, respectively.

The resulting T/M of the SEPS/payload combination in the optimum changeover

orbit is 1.461 x 10- 4 m/s2 . Figure 3-14 shows that a SEPS with an initial T/M

of 2.0435 x 10-4 m/s" requires about 143 days to descend to the optimum change-

over orbit associated with a chemical stage AV of 2565 m/s. The descent time

required for the SEPS with a lower T/M is approximated as:
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Figure 3-14. SEPS PERFORMANCE
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2.0435 x 10-4
t D4 x 143 - 200 days

1.461 x 10

Previous analyses have shown that in the presence of radiation the SEPS

ascent time between a given changeover orbit and GSO is greater than the descent

time. Table 3-4 contains the estimates for the delivery of the 3857 kg payload

to GSO.

Table 3-4. MISSION PARAMETERS FOR TRANSTAGE/SEPS DELIVERY OF 3857 KG
PAYLOAD TO GSO FROM 220 N MI SHUTTLE ORBIT

Payload 3857 kg

Transtage AV 2565 m/s

Changeover Orbit

Apogee Radius 44,000 km

Perigee Radius 7,300 km

Inclination 22.75 deg

SEPS

Initial T/M 1.461 x 10-4 m/s2

Ascent AV 2315 m/s

Ascent Propellant 426 kg

Ascent Time = 212 days

Number of Thrust Terminations = 200

3.3.3 Parametric Analysis of Times for Orbital Taxiing in Geosynchronous Orbit

In order to provide estimates of taxiing time around the GSO, the following

data from a simplified parametric study are presented. The actual sortie ter-

minal approaches that NSI investigated used optimum steering laws.
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The data were generated by using a spiralling technique for shaping the

trajectory profiles. These spiral trajectories were simulated by directing

the SEPS thrust vector along or opposite the velocity vector depending

on whether altitude is to be increased or decreased. The results indicate

that SEPS can maneuver a 3000-pound payload from any geosynchronous longitude

to any desired longitude in a maximum time of 11 days at a cost of less than

50 pounds of SEPS propellant.

The assumptions used in this study are as follows:

* The initial gross mass of SEPS is 1542 kg

* Thrust and Isp are 0.9136 newtons and 3000 seconds

* Continuous thrust is applied until the desired longitude shift

has been achieved.

The data presented in Figure 3-17 were generated by starting the SEPS

transfer maneuver 180 degrees away from the desired longitude and directing

the SEPS thrust along the negative velocity vector (retrograde) until the

phase.angle (longitude shift) was equal to 90 degrees. At this point, the

SEPS has spiralled into an orbit lower than geosynchronous, and the thrust is

reoriented to a point along the velocity vector (posigrade). Thrusting is con-

tinued in this direction until the phase angle between the SEPS and the desired

longitude goes to zero. At this time, the SEPS is back near geosynchronous

altitude. Three SEPS spiralling trajectories were generated for achieving

180-degree longitude shifts for 1000-, 2000-, and 3000-pound payloads. The data

obtained from these trajectories were used to construct the graph presented in

Figure 3-17.

An additional 2 days (an overly conservative estimate) are added to the

flight time to account for the short stay time in the earth's shadow (no

thrusting) and the time required to perform navigation updates prior to executing

the terminal rendezvous sequence of maneuvers. The data were generated assuming

the desired longitude was always ahead of the initial SEPS longitude, but these

data are completely symmetrical for the case in which the desired longitude is
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behind the initial SEPS longitude. The SEPS would simply spiral upward by

thrusting along the velocity vector, and near the half-way point it would reverse

the thrust direction.

An example of how to interpret the data presented in Figure 3-17 will be

given through an illustration. The time required of the SEPS to shift a 1000-

pound payload through 120 degrees of longitude is approximately 8 days (Figure

3-17). The geometry selected to accomplish this longitude shift is illustrated

by Figure 3-18.. The SEPS begins retrograde thrusting at position 1 in geosyn-

chronous circular orbit 120 degrees away from the desired longitude. After

three days of retrograde thrusting, the SEPS arrives at position 2 (59 degrees

closer to the desired longitude) and begins posigrade thrusting. After 3 more

days of thrusting, the SEPS arrives at position 3. Position 3 represents a

condition in which the SEPS is below the desired stationary longitude and 2

degrees behind. After about 1-1/2 days in a coasting (catch-up) mode, the

SEPS would start the terminal rendezvous maneuvers.

3.3.4 Spaceflight Tracking Data Network (STDN) Coverage of Changeover Orbits

The unshaded area of Figure 3-19 shows STDN coverage of objects that are

at least a 5,586-nautical mile altitude. In order to avoid unnecessary duplica-

tion of figures, the ground tracks of three elliptical changeover orbits are

plotted on the earth's equator to illustrate the continuous coverage available.

The positions of the ground track's starting longitude on the equator has no

significance. The locations were simply chosen to avoid overlay of the ground

tracks on the illustration. Since these changeover orbits will normally be

planned to enhance direct communication into the flight control centers, the

figure illustrates that there is no tracking or communications problem.

SEPS would require-no addition to STDN. Figure 3-20 shows communications

coverage at low orbit altitudes for Tug phasing orbits. In this figure the

shaded areas represent areas of STDN coverage. Tug can be contacted for ade-

quate periods on each orbital pass. For Tug ascent to changeover orbit tra-

jectory corrections, STDN coverage is essentially as shown on Figure 3-19.
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3.3.5 Sunlight and Shadow Times for the Elliptical Changeover Orbits

Figure 3-21 shows the maximum percent of orbital periods that three

different orbits (representative of those required to accomplish the reference

mission model) will be shadowed. Even in the worst cases, ascending node

locations can be chosen so that less than 7 percent of the orbital period is

shadowed. Figure 3-22 shows the average yearly percent of orbital time

periods that are shadowed. The figures illustrate that neither the payload

transfer activity nor the SEPS propulsion time available is significantly

influenced by shadow periods.

In NSI's analysis of shadow periods, seven orbits were considered.

Three of the orbits were circular, with low altitudes and high inclinations.

They are:

i = 990 h = 494 n. mi.

i = 1020 h = 790 n. mi.

i = 1030 h = 920 n. mi.

Four of the orbits were elliptical, with low inclinations and large semimajor

axes. They are*:

i = O0 ha = 19,366 n. mi. hp = 19,257 n. mi. year 1986

i = 2.50 ha = 23,900 n. mi. hp = 13,069 n. mi. year 1988

i = 6.40 ha = 27,276 n. mi. hp = 7,367 n. mi. year 1989

i = 8.20 ha = 28,593 n. mi. hp = 5,586 n. mi. year 1988

For each orbit, the time per revolution in the earth's shadow was computed,

because the inertial positions of the orbit and the sun were varied. For the

three circular orbits, the maximum shadow time per revolution is not a function

of the orientation of the orbit. The maximum shadow time per revolution for

these orbits occurs when the solar vector lies in the orbital plane. The values

are:
Max. Shadow Time/Rev. Percent of Nodal Period

i = 990 , h = 494 nm 35.00 min. 0.338

i = 1020, h = 790 nm 34.92 min. 0.3021

i = 1030, h = 920 nm 34.88 min. 0.289

*The argument of perigee is assumed to be zero in eachcase.
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For the elliptical orbits, (i>O), the maximum percent of an orbital revolution

spent in the earth's shadow is shown on Figure 3-21 as a function of the right

ascension of the ascending node, r. For the i = 0 orbit, the maximum time in

the earth's shadow is 1.038 hours, or 5.56 percent of a nodal period.

It is possible to specify an orbit-sun orientation for each orbit, except

the i = 990 case, which produces zero shadow time during a revolution regardless

of the value of r. For the i = 99-degree orbit, the minimum percent of a nodal

period spent in the earth's shadow is plotted versus r in Figure 3-23.

The shadow time per revolution depends upon the angle between the solar

vector and its projection on the orbital plane. In the case of elliptical

orbits, another important consideration is the orientation of the apogee of the

orbit to the shadow zone. When the apogee of the orbit is in the shadow, the

time spent in the shadow is a maximum. This situation causes the peaks in the

curves of Figure 3-21 near r = 0 ° and r = 1800. Since the argument of perigee

is assumed to be zero, when the ascending node coincides with an equinox, a date

may be selected during which the apogee of the orbit lies in the midst of the

shadow zone.

Another consideration in the selection of an orbit to minimize shadow

time, is the fact that the maximum possible angle between the orbital plane

and the ecliptic increases as the inclination increases. The result is an

increase in both the range of ascending nodes and the times during the year

which allow an orbit with zero shadow time to be achieved.

3.3.6 Operations Analysis, to Define Program Support

This subject is discussed in some detail in Volume III.

3.4 EARTH ORBITAL TEST (EOT) SORTIE

The objectives of the EOT sortie are to demonstrate SEPS ability, using

the GPME concepts evolved in this study, for:

* Multiple payload transfer

* Multiple payload retrieval
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* Self-replenishment of expendables

* Near universal adaptability to payload servicing and maintenance
functions

* Recovery of an unstabilized, noncooperative simulated satellite

* Validation of SEPSOC operational procedures

* Ability of solar arrays to function at partially deployed conditions;
at each design screen voltage (Isp) level; and at each design power
level contemplated

0 Operation at simulated environmental extremes.

The SEPS thruster subsystem is relatively simple compared to chemical stage

systems. Its attitude control, communications, navigation and guidance components

and subsystems are, in general, proven elements or proven design concepts from

spacecraft that will be operational before this SEPS test flight. NSI's assess-

ment is that there is very small risk that the basic core SEPS vehicle with its

manipulators will not perform in an acceptable manner even though it may not

perform exactly as expected.

It is considered probable that the tests will show that many details such

as: TV camera location on the manipulator arms; end effector to payload test

device interface; payload to transport diaphragm attach details, and so forth,

need design changes to improve operational flexibility or convenience, or both.

Most of these changes can be expected in those items of GPME that are returned..

to earth at completion of each sortie.

In summary, NSI's assessment is that all technology areas are mature enough

that SEPS No. 1 can be expected to be an acceptable operational vehicle even

though certain retrofit modifications are performed on it during refurbishment

at the end of its first mission cycle. The earth orbital test vehicle (SEPS

No. 1) is, therefore, planned to become the first operational SEPS. The first

sortie of SEPS No. 1 is planned such that intermediate orbital payloads that can

be deployed independent of SEPS are the only operational payloads that are carried

on this flight. The general test sortie sequence follows.
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3.4.1 EOT Configuration and Payload

The configuration is comprised of an operational Shuttle, IUS, and inte-

grated multiple payload package. The payload package consists of SEPS No. 1,

operational intermediate orbital payloads, test payloads, 
and the full GPME set.

SEPS No. 1 is the full operational configuration described in subsection

6.2 of this volume and depicted on Figures 6-3 through 6-5.

The GPME is the full set recommended as a result of this study. It

consists of:

STS GPME

* The standard payload transport shell and payload mounting diaphragms

* Transport shell to Orbiter adapter longeron that remains with Orbiter

* IUS-to-Orbiter adapter cradle (provided as baseline input to this

study).

SEPS Unique GPME

* Propellant replenishment kits

* A set of optional end effectors for the manipulators.

The test payloads are composite devices designed to allow SEPS to demon-

strate all of the payload support, servicing, deployment and refolding, main-

tenance, transfer, and retrieval functions envisioned for the full operational

time of the first generation SEPS (1981-1991).

3.4.2 Sortie Sequence

1. Shuttle ascends to a 300-km earth orbit and deploys IUS. Viability

of payloads is checked before IUS deployment.

2. IUS ascends to intermediate orbits and deploys operational payloads.

3. IUS ascends to SEPS deployment orbit.

4. The initial testing sequence begins with full activation 
of SEPS.

SEPS is mounted to the most forward diaphragm of the transport 
shell. Trans-

port shells can be designed with full splices so that 
shortened shells may be
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used when desired. The transport shell does not extend beyong this diaphragm,

so SEPS' solar cell array, payload mast, navigation and guidance sensors, and

so forth, can be fully deployed as desired. The activation sequence begins

with SEPS' switch to internal power. From this point forward, SEPS (though

still attached to IUS) is functioning as an independent spacecraft.

SEPS command data system and computer functions are validated.

SEPS solar arrays are deployed to about one-quarter span, and the power

supply and distribution system function is validated.

SEPS navigation and guidance sensor platforms are deployed, sensor func-

tion checks are made, and ACS function checks are made. Payload mast and

manipulators are deployed.

This completes the initial test sequence validating SEPS ability to func-

tion as an independent vehicle. The probability of failure to achieve inde-

pendent functional ability is almost zero due to the high level of redundancy

in critical subsystems. The only requirements are:

* An up-down data link

* At least 1 kw of solar array power

* Central computer and one memory bank

* ACS system in minimal mode

* Housekeeping power supply and distribution critical circuits only.

5. With SEPS ability to function as an independent stage validated, IUS

releases the payload transport shell with SEPS attached. With SEPS supplying

power to IUS the functions demanded of IUS have not been limited by the IUS'

small capacity storage system.

6. SEPS full navigation and guidance subsystem functions are now checked

out in detail and the gyros initialized.

7. Full checkout of the payload mast and manipulator system is accomplished

in parallel with other stagekeeping subsystems.
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8. The manipulators are used to demonstrate their capability to

accomplish the following:

a. Remove a module from the test payload and substitute another

for it.

b. Remove a test payload from one diaphragm and secure it to another

diaphragm in the payload shell.

c. Deploy and refold simulated or actual elements of test payload

such as solar panels, antenna, scientific instrument booms, and

so forth.

d. Using refueling kits, simulate the replenishment of payload

expendables by filling some tanks in a test payload.

e. With manipulators, demonstrate the ability to remove and replace

various items of real or simulated test equipment (and perform

functions) such as:

* Experiment packs and instruments substitutions

* Power supply module replacement

* Solar cell panel replacement

* Mechanical device and scan platform replacement

* Cut and splice a structural element

* Operate various types of spring loaded clamps, latches, and

so forth.

* Repeat several cycles of plugging and unplugging various types

of developmental and experimental electrical umbilicals.

f. Conduct test evaluations on several complete competitive concepts

for payload support umbilical systems.

9. All onboard software, computer functions, data system and communications

link functions are checked out.

10. The autonomous navigation and guidance system functions are checked by

comparison of the onboard SEPS position with the STDN SEPSOC determined position

functions.

11. All ACS functions are demonstrated.

12. Solar arrays are fully extended.

13. SEPS grasps the payload shell with one manipulator. With the other,

it disengages its launch support structure from its mounting diaphragm and

disconnects the test payload support umbilicals.

3-45



NORTHROP SERVICES, INC. TR-1370

14. SEPS, without ever having released the transport shell, transfers the

payload shell and test payloads to its payload transport mast and reconnects

the test payload support umbilical.

15. At least one of the GPME diaphragms will be designed for rotating a

test payload to satisfy thermal environment conditions. Functioning of rotary

transformers, slip rings, and other devices for transmitting alternating and

direct current power, and RF power through rotating joints will be evaluated.

16. SEPS is prepared for cruise to geosynchronous orbit and cruise is

initiated.

17. In geosynchronous orbit, SEPS is run through a set of maximum design

capability maneuvers with the ion engines. These maneuvers include combina-

tions of operating condition and sunlight at the design limit angles for both

thruster and main body thermal control. These maneuvers will be planned to

verify (or develop the basis for new analyses) the design analyses that predicted

the operational environments and operational capabilities of all SEPS components

and subsystems.

18. The transport shell with test payloads will be released, and a limited

test series will be run with SEPS as a bare stage to test thermal and other

effects when SEPS cruises with no payloads.

19. SEPS will rendezvous with the transportation shell, take one of the

test payloads from the transport shell, and, using the manipulator, push it

in a posigrade direction. Another payload will be pushed in the retrograde

direction.

20. SEPS will release the payload transport shell and retrieve first one

and then the other payload, thus demonstrating the ability to retrieve unstabilized,

totally inactive payloads.

21. SEPS will again rendezvous with the payload shell and install the test

payloads on diaphragms in the transport shell.
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22. The transport shell remains in geosynchronous orbit for the training

of new flight controllers who may come into the program during the subsequent

years and as an evaluation device for payload related testing, new GPME testing,

or for new operational concepts.

These earth orbital tests will have accomplished several significant objec-

tives.

1. SEPS design goal capabilities will have been validated in all respects

except wearout life and radiation damage sensitivity. Desirable design
modifications will have been identified for the remaining SEPS produc-

tion inventory.

2. STS and SEPS unique GPME functional capability and operational suit-

ability will be validated, and data for improved designs will be

obtained.

3. Operational procedures for the total system will have evolved, and

software packages will be validated.

4. A general purpose training, GPME technology demonstration device with
an emergency store of SEPS expendables will be in geosynchronous orbit

for future use.
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Section IV

SEPS FLIGHT SYSTEM
CONFIGURATION PAYLOAD SUPPORT, GPME, AND

INTERFACE CONSIDERATIONS
4.1 OBJECTIVES

The SEPS configuration, as discussed in the Summary, is dictated pri-

marily by design considerations associated with maximizing its capabilities

for:

* Multiple payload delivery and deployment assistance to each
individual payload as it is deployed

* Multiple payload retrieval

* In-space servicing of payload and maintenance of payloads.

Using the concepts found most desirable in this study, SEPS has no

direct interface with any STS element except Tug. Even that interface is

restricted to the avionics system.

The decision controlling factors regarding SEPS overall configuration,

therefore, are primarily related to the functional interfaces with payloads

and STS General Purpose Mission Equipment (GPME). In summary form, the decision

controlling factors are:

* STS transportation efficiency depends on multiple payload deliveries
and multiple retrievals

* Cost effectiveness requires that GPME be usable on successive
flights without modification and with few special payload adapter
items

* The GPME must simplify Shuttle-Tug operations

* Multiple payload transport must place minimum constraints on pay-
load designers

* SEPS staytime in space is limited only by wear out. Design should
provide for easy replenishment of expendables

* GPME mass increase to simplify other STS operations does not reduce
SEPS plus Tug net payload capability; modest trip time increases
allow SEPS to make up for Tug's lower payload transfer orbit ability

* Earth orbital SEPS has no AV limit within mission model requirements

* SEPS capabilities are almost directly proportional to design power
level in the range from 25 to 100 kw. Development at higher power
levels causes less than10 percent increase in development cost.

4-1



NORTHROP SERVICES, INC. TR-l370

The nature of these decision controlling factors so interrelates the

SEPS configuration and GPME that some of the objectives of Task II of the

original study statement of work were transferred to Tasks III and IV. This

section describes the analyses, rationale, compromises, and evolution of con-

cepts best fulfilling the following objectives of the original Tasks II, III,

and IV:

* Identify and develop design requirements and modifications to the
NASA-provided baseline SEPS that enhance mission performance

* Establish performance capabilities and limitations for different
mission modes such as delivery, delivery/retrieval, and multiple
payload placement/retrieval/servicing/maintenance

" Develop conceptual designs or recommended systems of payload
handling, servicing, and ancillary hardware

* Develop conceptual designs of recommended docking interfaces

* Evaluate SEPS compatibility with Shuttle-IUS-Tug safety require-
ments

* Identify necessary or desirable changes in specific subsystems

* Evaluate techniques leading to a preferred operational concept for
man-in-the-loop or autonomous N&G subsystems for terminal approach
to the rendezvous/docking functions

* Define rendezvous and docking implementation requirements, STS
interfaces, and ground system interfaces

* Investigate onorbit versus ground-based servicing/refurbishment of SEPS

* Identify subsystems design impacts.

4.2 IDENTIFICATION OF THE MOST DESIRABLE PAYLOAD SUPPORT ANCILLARY
GEAR AND GPME

Past study approaches to arriving at the "best" configurations on SEPS

and on Tug for fulfilling the objectives described in subsection 4.1 appear to

have considered each function: docking, payload transfer, retrieval, servicing,

and maintenance as separate entities as if the simplest implementation for each

function would lead to the "best" accumulation of equipment and the simplest

inflight system operation. In NSI's first consideration of this problem, it

appeared obvious that some multifunction system would be simpler than a hodge-

podge of "best" single-function systems. Furthermore, it appeared that a

system capable of accommodating payload configurations not known at the time

the SEPS design was frozen and capable of accommodating operations not initially
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envisioned must necessarily be highly desirable for implementation on SEPS.

Inherent adaptability to new payloads without placing undue design constraints

on the payload designer appeared necessary.

4.2.1 Articulated Docking Frame and Articulated Tug Transport Frame

Study work by previous contractors for SEPS and Tug concentrated on

docking devices and various mission peculiar structural frames that required

articulation. When single or dual payloads are the only requirements and

the servicing function is ignored, such approaches can result in desirable

systems. The STS with SEPS problem is, however, quite different. As presented

in Section I histograms, the most cost effective transport system utilization

results in multiple payload Shuttle flights such that 83 percent of the individ-

ual payloads are delivered in groups of four or more, and 47 percent in groups

of five or more. Ninety percent of the down payloads are retrievable in groups

of two or more, 75 percent in groups of three or more. When such large numbers

of payloads must be handled, docking frames and articulated support frames are

not promising. NSI took the docking/payload frame system, at MSFC direction,

as a point of reference for trade studies and tried to generate the best concept

of that type which met all the requirements.

Except for the first sortie when SEPS is launched with the payloads,

all other sorties begin with SEPS in the orbit where it last performed a

mission function. Generally, this is a geosynchronous orbit. When a sortie

requires retrieval of down payloads for return to earth by Shuttle through

rendezvous with Tug, SEPS first function is collection of the payloads and

transporting them to Tug in its lower energy orbit.

The simplest hardware and operations system we could envision for this

operational sequence is shown on Figure 4-1. SEPS has an articulated square

docking frame, similar to those evolved by McDonnell Douglas in MSFC-directed

studies, and one extendable payload mast such as the one NSI selected for the

SEPS manipulator/mast system. Figure 4-1 does not show all steps of the

sequence. The omitted steps will be identified.
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The payloads must be designed with docking rings (or have other provis-

ions for engaging docking latches) on two ends. The payloads also are equipped

with spring-loaded clamps so that when the properly oriented clamp is pressed

against the SEPS payload mast it will spread and snap over the cusps of the

biconvex section mast. These clamps may be similar to ones described later

for the recommended system.

The payloads must be stabilized. If docking rings are used on the pay-

loads and they have no protuberances beyond a 2.3 meter (7.5 foot) radius,

a stable spinning satellite may be retrieved. An unstable tumbling satellite

cannot be retrieved.

As a first step of the sequence, SEPS cruises to the rendezvous point,

commands the variable length sections of the docking frame to the proper

geometry, maneuvers into position for docking, and then moves in and docks

with the payload. Some parts of this sequence may be autonomous. All are

monitored by ground controllers who can override the autonomous operation if

necessary. The extended square frame docking device is partially retracted;

the supporting struts of the docking frame have motor driven, screw activated,

telescoping sections in addition to their shock absorber sections. If each

of these struts is driven to the appropriate length, the square frame docking

mechanism can be tilted, translated axially, and translated laterally. This

articulated docking frame requires 12 struts with position-controllable linear

actuators. Eight of these struts also contain shock absorbers.

After the first payload is docked to the frame in O of Figure 4-1, the

capture latches can be commanded to a "loose clamp" position and a friction

drive wheel can be engaged with the payload docking ring. The payload is

rotated until its mast clamp is properly oriented with the mast on SEPS.

The articulated docking frame struts are driven to positions that

translate the frame laterally about 0.25 meter until the payload mast clamp

snaps over the mast. The SEPS payload configuration is as indicated in )
of Figure 4-1. The SEPS cruises to rendezvous with payload (PL) #2.
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As SEPS approaches PL #2, the docking frame latches are released, the

payload mast is extended a short distance forward, and the mast assembly with

attached payload #1 is rotated 180 degrees, thus leaving a clear path to the

docking frame. The terminal approach configuration to PL #2 is shown in (.
The capture sequence, Q , for PL #2 is similar to that for PL #1. The payload

transport mast is extended until PL #1 on the mast will clear PL #2 on the frame

when the mast is rotated 180 degrees. PL #2 is rotated until its mast clamp is

in position. The docking frame is translated laterally until PL #2 mast clamp

snaps onto the mast. SEPS then cruises to rendezvous with PL #3.

SEPS approach configuration to PL #3 is shown in Q of Figure 4-1.

The steps in achieving final configuration for cruise to rendezvous with

Tug, ( , are obvious after the foregoing discussions.

Somewhat simpler mechanical implementations were conceived, but the multiple

payload retrieval function then involved more complex flight maneuvers. These

maneuvers used more ACS propellants, they required payloads to have at least

attitude holding ability throughout the full multiple payload collection

phase, or they involved constraints on the payload
' designers. For the previous

sequence, each payload was passivated after initial clamping to the SEPS mast.

Tug's problem of bringing the multiple payload group up to the rendez-

vous orbit with SEPS is illustrated on Figure 4-2. Sequence Q is the con-

figuration as deployed from Orbiter. Up PL #3 is attached to Tug's docking

frame which is designed to support it through the abort and crash load safety

criteria of the manned Orbiter.

Up payloads #1 and #2 are supported on articulated L-frames shown in

simplified schematic form. The minimum articulation requirements of these

frames are that they can be extended in and out along the long leg direction of

the L and that they can be clamshell style, opened and closed. For lateral

rigidity the short legs of the L-frames must have structural load-carrying

latches where they meet at the extended axial center line of Tug.

4-6



UPPAYLOAD lSET

TUG -ln

OUTER FRAME _ _ m
SET I-> Wil

"TUG INNER
FRAME SET 2

TUG SEPS & RETRIEVED
TUG PAYLOADS. . RENDEZVOUS P

WITH SEPS

TUG DEPLOYS SQ FRAME DOCKING DOCKING ADAPTERS
TUG DEPLOYS ADAPTER
FRAME SEPS

OUTER FRAME (TUG) SEPS

INNER FRAME (TUG)

Q -03

ALL PAYLOADS ARE NOW ATTACHED TO TUG. A DEVICE
ON SEPS' SO DOCKING FRAME RELEASES PAYLOAD
THUS RELEASING SEPS 7 SEPS MANEUVERS TO DOCK WITH FREE

TUG RELEASE FLYING UP PAYLOAD PACKAGE
FFSP .- ' 

' l

- FREE FLYING STABILIZED PACKAGE

Figure 4-2. DOCKING FRAME PAYLOAD TRANSFER SEQUENCE
o



NORTHROP SERVICES, INC. TR-1370

The L-frame long legs are actually part of a cylindrical surface, and

the short legs are pie-shaped segments of a disk to provide area for mounting

payloads in a stable manner.. With honeycomb cores and high strength fiber/epoxy

surface sheets, these L-frames can be relatively low in mass if PL #1 and PL #2

are supported against Orbiter crash load requirements by brackets to the Orbiter

structure so that the L-frames only have to resist Tug's freeflight loads. The

pairs of L-frames are all shown rotated into the plane of the schematic. They

would in fact be at 90 degrees to each other.

When Tug comes to the rendezvous position with SEPS the L-frames are

opened, G , and the up payloads released, .

The up payloads are attached to a light, tubular, flexible frame which

supported the Tug umbilical lines to the payloads. The tubular frame has a

simple attitude hold and RCS to stabilize the up payload package for later

retrieval by SEPS. This tubular frame and ACS is expendable. The tubular

frame and other attach elements must be tailored for each payload package.

After release of the up package Tug moves over to dock with the retrieved

payload set and SEPS, G. The SEPS payload mast concept, derived from the

recommended system concept to be described later, has adequate rigidity and

strength to sustain docking loads.

Three shock-absorbing factors reduce non-nominal docking loads. These

factors are:

* Tug docking frame shock-absorbing struts

* The payload-to-SEPS mast clamps are friction-hold clamps. If
axial force exceeds design slip, the clamps slide down the mast.

* The SEPS mast can be designed for normal overdrive windup into its
housing at loads that approach critical buckling for the mast
column.

After Tug docks with retrieved payload (RPL) #1, the short pair of L-frames

are closed and their tips are latched to each other where they meet at the Tug's

extended center line. The axial legs of the L-frames are extended until the
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payload capture latches on the L-frame short legs capture the payload docking

rings of RPL #2. A similar sequence is performed for RPL #3. The configu-

ration status is now as shown in .

SEPS retracts its payload mast. As the retraction force exceeds the

payload clamp friction force, the mast slides through the clamps until it

clears RPL #3's clamp and is fully housed. SEPS releases its docking frame

latches to RPL #3 and backs away as shown in G. SEPS proceeds to complete

the docking exercise with the up payload group Q. SEPS payload support

umbilical is driven to engagement with that of the payload package. SEPS

now initiates cruise to deliver the up payloads to their mission stations.

This system has simple individual devices, but there are many of them.

Most of them require position command, command implementation means, and

position status reporting. Many of them must work in coordinated relative

geometric patterns to accomplish their functions. The system requires TV

visual aids for docking, monitoring, and verification of clamp attachments,

and laser radar for terminal approach to docking.

The system requires that each payload have a mast clamp and have docking

rings at each end. The system does, however, provide for independent mounting

of payloads so that no payload needs to be designed for structural rigidity and

strength necessary to support other payloads on its docking rings.

The Tug operating alone, if fitted as described and also equipped with a

payload mast like SEPS, would be capable of multiple payload retrievals for

those instances where payload weights were low enough for Tug performance to

allow it.

This scheme fulfills the transport requirement except that it has no

capability for retrieval of payloads whose attitude control systems are mal-

functioning or depleted, and it is very difficult to accommodate more than three

payloads.
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The scheme has no in-space servicing or maintenance capability. To meet

that requirement a servicer kit such as the one MDAC proposed in its Payload

Utilization of Tug studies might be adopted. The kit concept is shown on Fig-

ure 4-3. The kit has a rotating spare module table with module jack-out, jack-

in ability. The spare module table is first mated to the payload with the

module to be replaced over a vacant module position in the table. The defective

module is jacked out. A replacement module is rotated into place and jacked

into the payload. The module table scheme appears simple at first, but as imple-

mentation details are examined it becomes more complex. Further, either the

payloads must all be constrained to meet the interface of a standard servicer-

maintainer or the servicer-maintainer must be tailored to every payload. The

system has no flexibility for unplanned situations and has very limited capa-

bility.

NSI considered this approach to be unacceptable because of the constraint

to payload designers and developers, the limited servicing capability, and the

fact that the culmination of its many apparently simple devices and operations

makes it the most complex overall system.

The scheme does not appreciably simplify prelaunch ground functions

involved in mating multiple payload packages with Shuttle and Tug nor does

it decouple the multiple payload package integration and flight readiness

check from Shuttle/Tug launch preparation activities.

The scheme does not appreciably reduce the amount of mission special

interface devices required.

4.2.2 Boom-Manipulator - Payload Transport Shell Scheme

One highly desirable objective in any scheme for handling multiple

payloads is to provide a system where the multiple payload package can be

integrated into a single structural package, with single avionics and

fluids (if required) interfaces. The multiple payload group is then pre-

sented to Tug as a single package. Tug plus package is presented to Shuttle

as a single payload with only Tug's standard interfaces.

Ideally, Shuttle would see every Tug flight-to-rendezvous with SEPS

as a standard physical and procedural interface. Only the level of raw power
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support and the information which data management systems transferred across

interfaces would be different as seen from Shuttle.

The system concept depicted on Figure 4-4 shows the potential for

meeting the above objectives to the extent practicable. The system will not

be described in any detail because most of its elements have nearly one-to-

one correspondence with some equivalent element in the recommended system to

be described later. Briefly the systems operation is as follows.

SEPS always carries a payload shell except for sorties that will not

require multiple payload delivery or retrieval. The payload shells are equipped

with diaphragms to which individual payloads are mounted. Payload shells may

occasionally be left in "storage" in geosynchronous orbit. Each payload retains

the structure and mounting/docking ring that attached it to the launch support

diaphragms for its ascent flight.

SEPS has an extendable boom similar in structural characteristics to

the payload mast of the recommended scheme. The shoulder mount of this boom

is on a base plate that can be rotated. The angle of the boom to the base

plate can be commanded, and the entire boom mechanism is rotatable upon

command. At the outboard end of the boom, a joint with two degrees of

rotational freedom supports an extendable forearm section to which a manipulator

"wrist" and "hand" are attached. This device is, in essence, a manipulator with

extendable arm segments.

A sortie sequence begins with SEPS in geosynchronous orbit with the

payload shell that was used to deliver the payloads of the previous sortie.

The diaphragms that up payloads were mounted on have been retained.

SEPS cruises to a station alongside a payload to be recovered. It then

relocates the diaphragm equipped with latches that match that payload's docking

ring to an appropriate position in the shell. The diaphragm was equipped before

launch of the previous payload set with a set of contact-actuated, spring-loaded

latches such that when SEPS presses the planned retrieval payload's docking ring

onto the latches, they will capture the ring.
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SEPS, using the manipulator/boom, grasps the payload at any one of several

built-in grasp points (or any point of adequate structural rigidity) and places

it such that its docking ring trips the capture latches on the diaphragm.

SEPS successively captures each payload and cruises to meet Tug at the

rendezvous point. Tug to SEPS relative positions at rendezvous are shown on

Figure 4-4 (.

Either Tug or SEPS maneuvers until they have the relative position Q

of Figure 4-4. SEPS grasps and holds a diaphragm of the payload shell brought

up by Tug with its manipulator/boom.

Tug releases from the up payload shell, ( of Figure 4-4, backs away,

and moves into position to dock with the down payload shell attached to

SEPS, Q

Tug docks with the shell, 0. SEPS releases the down payload shell to

Tug, and Tug (or SEPS) backs away, (. Tug proceeds to rendezvous with

Orbiter.

Q SEPS places the up payload shell on its docking frame and proceeds on

the ascent maneuver to deploy the up payloads in their respective positions.

This scheme is compatible with the baseline Tug as defined by MSFC.

Figure 4-5 presents local detail of the forward structural skirt of the MSFC

baseline Tug, details of a McDonnell Douglas concept of a baseline Tug

docking capture ring, and the transition parts of the NSI-proposed transport

shell. Every active element portrayed on Figure 4-5 is an element of the MSFC

baseline Tug.

To execute servicing or maintenance functions with this scheme, the

SEPS would capture a payload and place it on a diaphragm in the transport

shell with the area of the payload needing maintenance in the position pro-

viding the best teleoperator visibility and manipulator access.
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This NSI-developed concept is the simplest one that meets all of the

requirements that appear most desirable. Its principal shortcomings are

lack of some adaptability for unplanned, quick response maintenance or

retrieval functions, and lack of a general capability to assist in deploy-

ment (or refolding for retrieval) of certain elements of payloads. It lacks

the general servicing and maintenance capability of a two-arm, full manipu-

lator system.

4.2.3 Recommended SEPS Configuration With Recommended STS GPME

NSI's operations analyses and cost effectiveness assessments indicated

that the SEPS system operating with STS should meet the following criteria:

* Minimize constraints on payload designers and developers

* Simplify Tug interfaces and functions for payload transport and
recovery. Provide for any arbitrary size and number of payloads
that can be accommodated by Orbiter's cargo bay

* Minimize STS specialized transport gear. Use only standardized
equipment plus individual payload structural attach mountings

* Standardize interface of payload packages to Shuttle

* Decouple prelaunch activity schedules of Shuttle, Tug, and the
multiple payload packages to the extent practicable. Avoid large
numbers of even minor mission special adapting devices on Tug or
Orbiter so that substitution of the package to other STS flight
articles could be made to meet priority rescheduling

* Provide ability in orbital taxi role to deploy, retrieve, and
service payloads in any arbitrary sequence as SEPS moves around
geosynchronous orbit

* Provide ability to deploy (or refold) elements of payloads as
backup to onboard systems or to allow elimination of deploy/refold
driver devices in order to reduce DDT&E costs to payload developers

* Provide ability to transport, retrieve, and service payloads not
yet defined at time of SEPS first launch without significant design
constraints on the payloads

* Provide capability to retrieve failed unstabilized satellites.

A system which essentially meets all of the criteria is shown on

Figure 4-6. The cylinders represent the envelope dimensions of the desig-

nated payloads from the NASA-supplied mission model. The.particular payload

grouping is a specific Shuttle flight cargo manifest (SEPS - Tug sortie #9)
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taken from an STS System Operational Profile for accomplishment of the total

mission model.

The sequence of this particular sortie, No. 9, for SEPS flight article

No. 1 which has been operating in space for 4 years is as follows.

SEPS had retained the diaphragms to which the payloads for the previous

sortie (No. 8) were mounted. The GPME diaphragms have a multifunction pattern

of payload attach holes through which payload struts are secured to the

diaphragms. The attachment will withstand the Shuttle's 9 g crash load criteria.

Concepts for these GPME items will be described later.

SEPS cruises up to a payload to be retrieved and takes station along-

side it. A manipulator, under ground control, grasps the payload and mounts

it on a diaphragm. SEPS collects each successive payload to be retrieved

in similar fashion. Then it begins the descent to rendezvous with Tug.

In this specific sortie all of the retrieved payloads are mounted on a

single diaphragm. More than one diaphragm can be used. As another option,

if multiple payload package arrangements of several successive sorties make it

desirable, the sorties might have been accomplished by transfer of complete

payload shells.

The diaphragm clamped to SEPS payload transport mast would be located

near the tip of the mast. Diaphragms from the previous sortie unused in

the retrieval procedure are stored on the mast just below the one to which

the payloads are mounted. The mast, throughout the payload collection oper-

ations and the return cruise to meet Tug, has been partially retracted so

that the composite PL center of gravity (c.g.) is nearer SEPS (c.g.), reducing

their combined moment of inertia to facilitate maneuvers.

When SEPS is in (or nearly so) the rendezvous orbit, the Shuttle is

launched and Tug proceeds to the rendezvous point with SEPS. Either vehicle

can execute the final station attainment maneuver.
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When on-station SEPS grasps the Tug's payload transport shell and main-

tains the relative geometric positions of SEPS and Tug, the attitude control

systems of both crafts are deactivated at this point.

The payload mast is extended until space is available underneath the

down payload set for placing the first group of new payloads on the mast.

The other manipulator unlatches the diaphragm clamp and Tug payload support

umbilical to the diaphragm. It then grasps the diaphragm to begin trans-

ferring it to the payload mast. This is the system state depicted on

Figure 4-6. Phantom lines show position of the first group of payloads after

they are attached to the mast.

The mast is extended until space is available to mount the last up

payload and diaphragm on the mast. SEPS repeats the previous sequence,

and all payloads are now on SEPS. The manipulator now plugs a SEPS payload

support umbilical into each diaphragm so that SEPS now provides the payload

support previously supplied by Tug.

The down payload set on the diaphragm is then installed in Tug's pay-

load shell by the manipulator. Diaphragms can be located at any position

in the shell that is desired, providing a means for c.g. location control for

Orbiter's descent flight. Spare diaphragms from the previous sortie are mounted

in the shell just forward of return payloads. These spare diaphragms provide

added protection against a retrieval payload becoming detached and smashing

into the Orbiter crew compartment during a crash landing.

The first manipulator (which has maintained the relative geometric

positions of Tug and SEPS throughout the above procedure) or both manipu-

lators gently shove the Tug away.

When adequate clearance between the two spacecraft exists, Tug proceeds

to rendezvous with Shuttle and SEPS proceeds to mission orbits desired for

each payload.
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Three candidate concepts have been described. The simplest mechani-

cally and operationally is the two manipulator arm system. That system

also has the most basic capability and versatility. The one area where it

appears more complicated is in the requirement for computer memory and on-

board software. A summary comparison of the systems is given in Table 4-1.

Table 4-1. PAYLOAD SUPPORT, HANDLING, AND SERVICING CONCEPT COMPARISON

ARTICULATED DOCKING TRANSPORT SHELL, TRANSPORT SHELL,
FRAME AND ARTICULATED EXPENDABLE BOOM AND PAYLOAD MAST AND
MULTIPLE PAYLOAD SIMPLIFIED MANIPULATOR MANIPULATOR SYSTEM
SUPPORT STRUCTURES

ADVANTAGES ADVANTAGES ADVANTAGES

* SIMPLEST ONBOARD * MODERATE ONBOARD 0 GREATEST INHERENT
SOFTWARE SOFTWARE REQUIREMENT CAPABILITY FOR PAYLOAD

* SIMPLEST PAYLOAD SERVICES AND
DISADVANTAGES TRANSFER FUNCTION MAINTENANCE

* MINIMIZES DESIGN CON-
* MOST COMPLEX FLIGHT STRAINTS ON PAYLOADS

OPERATION DISADVANTAGES
* SIMPLEST AND MOST FLEX-

* MOST COMPLEX FLIGHT * LIMITED SERVICING IBLE INFLIGHT OPERATIONS
HARDWARE AND ONORBIT

SLIMITED GPME - REQUIRES MAINTENANCE ABILITY 0 SIMPLEST GPME & TUG PAY-
* LIMITED GPME - REUIRES LOAD INTEGRATION

TAILORING OF TUG * INTERMEDIATE FUNCTION
MISSION EQUIPMENT & ADAPTABILITY TO
ORBITER TO PL ADAPTERS UNPLANNED MISSION * HIGHEST MISSION SUCCESS
FOR EACH SORTIE EVENTS PROBABILITY

* EITHER SERIOUS PL
DESIGN CONSTRAINT OR DISADVANTAGES
VERY LIMITED SERVICING * ONBOARD SOFTWARE
ABILITY REQUIRES 32K WORD

* NOT ADAPTABLE TO UN- MEMORY STORAGE
FORESEEN OR UNPLANNED
MISSION EVENTS

* TOTAL COMPONENTS
REQUIRING POSITIONING
& FEEDBACK INFO EXCEED
OTHER SYSTEMS

4.3 GENERAL PURPOSE MISSION EQUIPMENT ASSOCIATED WITH SEPS OPERATIONS

The principal items of equipment that are kit attachments to SEPS are

the manipulator and mast subsystems. The other elements of the payload

transport and support equipment set are STS GPME. They will also serve

to simplify STS operations that do not involve SEPS.

Throughout this study, NSI has continuously received suggestions to show

design detail to accomplish various major and many minor functions. Within
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the 6,500 man-hour scope of the contract it is not possible to create thoroughly

analyzed design concepts. Further, NSI believes many alternate detail design

concepts for components are workable and reliable. The "best" (optimum) design

of components is that one which makes the total system most effective in

accomplishment of its desired objectives. Design detail is therefore best

optimized along with detail design of the total system.

The design concepts presented here (except for minor detail) are defi-

nitely workable and are believed to be valid.candidates, at least, for imple-

mentation in the STS/SEPS system.

4.3.1 Manipulator Subsystem

The attachment to SEPS and the reach of the manipulators is shown on

Figure 4-7. They can reach any location around the complete circumscribing

cylinder of the 9.1m long, 4.6m diameter volume available for 
cargo after

Tug has been installed in the Orbiter's cargo bay. The manipulators are

such that they can reach any area around or underneath SEPS for self-

maintenance, servicing, or self-inspection with the TV cameras that would be

mounted on the wrist.

Figure 4-8 shows characteristics of the manipulator. The structural

strength of the manipulator is dictated by rigidity requirements. Providing

motors and harmonic drives to supply 500 foot-pounds of torque at the joints

allows unloaded 1 g ground testing. Only 50 foot-pounds of torque are

required in space. Each manipulator can change the end effector of the other.

For special functions on specific payloads specialized end effectors in

addition to the standard set may be sent up to SEPS with the special payloads

service items.

Figure 4-9 shows some joint concepts considered. Parallel stowage is

desirable for SEPS. The offset joint offers many advantages in drive mech-

anism implementation. It is not inherently limited to +180 degrees rotation.

The centerline offset of the joint is not a significant disadvantage in SEPS

applications.
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Figure 4-10 is an inboard profile of the manipulator indicating the

application of the harmonic drives and torque motors.

Figure 4-11 shows an isometric cutaway of a joint. Figure 4-12 is a

block diagram of the manipulator's electronics and the interfaces with ground

control and SEPS computer.

4.3.2 Payload Transport Mast

Figure 4-6 shows the installation of the payload transport mast on

SEPS.

Figure 4-13 shows the recommended general design approach. A study of

Figure 4-13 indicates the potential of this type mechanism for very high

reliability. Its drive system is extremely simple and easily provided with

several levels of redundancy, as indicated in the figure.

The mast section is collapsible onto the storage drum as rotation of the

drum produces .the forces that flatten its free form cross-section shape.

Driving the drum in the extend direction will extend the mast. Each unit

length will assume its free-form cross-section as it passes through the

restraining sections of the housing.

This mast concept has very compact stowage for long mast lengths. It

is simple, has high torsional rigidity for a collapsible system, has high

bending strength, and good column characteristics. SEPS high Isp performance

is not very sensitive to inert mass. The small, if any, mass penalties asso-

ciated with use of these biconvex, edge welded, collapsible masts is more than

offset by many other desirable features including high reliability and pre-

dictability of dynamic structural behavior. NSI also recommends this approach

for the solar array spars as indicated on later drawings.

4.3.3 Payload Transport Shell and Diaphragm

The transport shell and one diaphragm are shown on Figure 4-14. The

shell is a simple monocoque, honeycomb core sandwich, half cylinder. Its only
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unique features are a centerline keel strip and corrugations at gunwale

edges. Notches in the keel plus the corrugations allow the payload mounting

diaphragms to be located at any desired location within +8.6 cm pitch position.

Payloads are mounted to the diaphragms.

One approach to standard diaphragm design is shown on Figure 4-15. Typical

payload mounting hole locations are indicated by plus (+) marks at the corners

of a 1-foot square grid pattern. A cross-section through a hole is shown.

Honeycomb cells in the area of the hole flanges are filled with high crushing

load polyurethane foam or other compressive load-bearing material.

The terminal end of a payload strut that goes through this hole is indicated

on Figure 4-16. When the worm wheel nut is driven in the unscrew direction, it

lifts the locking surface off the inside face sheet of the diaphragm. This

leaves the strut free to go further through the hole. As the nut is further

unscrewed by the impact wrench inside the manipulator hands, it lifts the "T"

bar, collapsing the spring-loaded fingers which can then be withdrawn through

the hole.

To attach a payload with mounting struts terminating in this device, the

"worm nut" is in an intermediate position so the fingers are sprung open. If

the nose of the strut is placed in a diaphragm hole and pushed toward the

hole, the slope of the hole walls collapse the spring-loaded fingers, and the

strut end with the folded fingers slides through the hole until the fingers

clear the back side of the hole. The fingers then spring open and the payload

strut is loosely attached to the diaphragm. The payloads are firmly fastened

to the diaphragms by driving the worm wheel nut until the backing surface is

firmly seated to the inner face sheets of the diaphragm.

Figure 4-17 shows a payload transport mast clamp housed in a 2-inch

thick section of the diaphragm in the keel tang area. When the diaphragm

is lifted from the payload transport shell, springs force it out to a position

ready for attachment to the payload mast. When pressed against the payload

mast section, the clamp arms spread further until the rollers snap over the

mast cusps. The mast is now trapped by the clamp as shown.
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Figure 4-18 shows the interface longeron that is mated to the Orbiter's

cargo mounting longeron. They extend 9.1 m down either side of the Orbiter's

cargo bay. The shell-Orbiter interface longeron is retained by the Orbiter as

long as it is using the transport shell to support cargo missions. The inter-

face longeron's attachment requires no modification to the Shuttle, being

attached or removed by use of the Orbiter's standard payload attachment pins.

The corrugated edges of the transport shell gunwale fit into the corrugations

of the adapter longerons. Each corrugation is designed to carry part of the

9g Orbiter crash load. In this way no concentrated loads are transmitted to

the transport shell. It can therefore be a very light weight structure. At

selected areas near the Orbiter's attachment pin locations, the interface

longerons have Z-load locking bars which are pushed through holes in the

adapter longeron into matching holes in the corrugated gunwale section of

the transport shell.

The complete GPME set described in the preceding section is completely

compatible with IUS, Tug, and Orbiter. The GPME set allows, to the extent

practicable, the decoupling of Tug, Shuttle, and multiple payload package

prelaunch operations.
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Section V

IMPACT OF SEPS OPERATION
WITH STS ON ORBITER, IUS, AND TUG
PHYSICAL INTERFACE REQUIREMENTS

5.1 GENERAL CONSIDERATIONS

The delivery to or retrieval of SEPS from typical IUS/Tug payload trans-

fer orbits imposes no additional physical interface requirements. SEPS as an

individual payload to be delivered has very modest support requirements well

within the design capabilities proposed for IUS and Tug or those baselined for

the Orbiter.

Figure 1-9, the System Operational Profile, showed that only three sched-

uled SEPS launches and one retrieval were required to accomplish the reference

mission model from 1981 through 1991.

SEPS augmentation of IUS-Tug transportation capabilities allows the use

of the GPME concepts described earlier, which greatly simplifies the Orbiter,

IUS, and Tug ground operations involvement in multiple payload delivery opera-

tions. The transport shell always presents a single structural payload inter-

face to the IUS, Tug, and Shuttle Orbiter. Because all payload inertial loads

are distributed into the shell which distributes the total load to the Orbiter's

cargo bay longerons in an acceptable way, loads on IUS and Tug are lower than

design limit loads derived from certain individual payloads carried by IUS and

Tug.

The additional interface requirements for STS elements, therefore, derive

from the fact that with SEPS in the system multiple payload cargo manifests

may contain up to seven or eight payloads instead of three or four. The

potential primary impact, as might be expected, is in the avionics support

areas of telemetry, command, and power supply.

Other potential added demands are in the areas of propellant dumping,

venting, RTG cooling, and payload contamination protection. None of these
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represent extra requirements since the character of the multiple payloads to

be delivered with Tug-SEPS sorties does not present a greater requirement than

some of the more complex single and dual payloads transported without SEPS.

Combining of multiple payloads on the transport stage results in an interface

equivalent to a single payload. Avionics factors will be discussed in more

detail later.

5.2 IUS-SEPS INSTALLATION IN ORBITER

Figure 5-1 shows the IUS with a payload shell holding a SEPS for its

initial launch into space, and as added payloads, a SEOS payload and a commun-

ications satellite. In Section IV we described the payload to diaphragm and

transport shell to Orbiter interfaces.

The Transtage is mounted to the Orbiter in accord with the baseline STS

system design. Since that interface is not affected by SEPS it is not depicted.

The IUS is not structurally attached to the transport shell during Orbiter

ascent. A small gap exists between the shell and adapter structure during

Orbiter ascent; therefore, no loads due to Orbiter flexing from flight loads

or airframe heating are transferred from shell to IUS. For deployment from

Orbiter and for IUS freeflight to its maximum energy orbit with this payload,

IUS is attached to one adapter diaphragm whose outer edge is fabricated to a

large L section ring frame. Eight electric motor driven screw jacks operate

clamping latches to clamp the transport shell to the L-frame just prior to

deploying from the Orbiter. The latches and a crosssection through the struc-

ture just described is shown in detail A of Figure 5-1. They are actuated by

IUS power on command received through IUS.

The adapter diaphragm, of different diameter in its upper and lower

halves, is permanently attached to IUS through its standard interface for

attachment of individual payloads. Therefore, no modifications are required

for IUS to operate with SEPS or for compatibility with the recommended GPME.
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The system has several advantages.

1. It is the shortest method for load transistion thus providing more

net available payload installation space in Orbiter's cargo bay.

Mass, from a cursory examination, appears to be nearly as low 
as for

an optimal system under flight loads from IUS main engine 
thrust.

2. SEPS has the option of carrying payloads to geosynchronous orbit in

the payload shell rather than transferring them individually.

3. The transport shell does not need to run the full length of the cargo

bay. If IUS were made recoverable, then when it returns to Orbiter

the payload shell can be mounted further forward in the Orbiter than

it was for the ascent phase. The empty IUS is cantilevered from the

shell-diaphragm assembly for the return to earth. This allows the

Orbiter some degree of control over descent payload c. g. location.

On many of the flights it is feasible to recover IUS. As a matter of

passing interest a 100 kw SEPS operating with an IUS alone can accom-

plish the total mission model with only 26 more flights than is

required for SEPS + IUS + Tug.

4. By use of field splicing on the adapter ring, the shell can be retro-

fitted for use with Tug.

5.3 TUG-SEPS INSTALLATION IN ORBITER

Figure 5-2 is a similar layout for SEPS + Tug with an arbitrary depiction

of payloads. The interface of the shell and baseline Tug are tailored so no

modification to the baseline is needed to match the baseline Tug. The detail

equivalent to detail A of Figure 5-1 was shown in Figure 4-5.

The soft latching for Orbiter ascent is also achieved with Tug. Similar

options to those described for IUS are available.

5.4 SOME PAYLOAD-TUG-SHELL SPECIAL INTERFACES

One of the primary advantages of the payload shell concept is that

multiple payloads are presented to Tug and Orbiter as single packages. The

shell diaphragm mount arrangement also has the advantage that access to indi-

vidual payloads is made easier. Payloads requiring contamination shrouds or

other individual treatment can be accommodated readily since each payload is

base mounted.
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One of the special treatments required by some payloads is provision of

contamination shrouds and filtered clean air to maintain the high cleanliness

level required by some sensors and instruments.

Figure 5-3 shows schematically a cutaway of payloads mounted in the half

shell. The double wall plastic bags when inflated form enclosures over only

those PLs requiring protection. Shrouds can be installed before or after

diaphragms are installed in the shell. Figure 5-3 also shows a shroud where

the diaphragms at each end form the end closures.

CONTAMINATION
SHROUD

PAYLOAD
SHELL

Figure 5-3. SCHEMES FOR PAYLOAD CONTAMINATION PROTECTION

Payloads can be located on the diaphragms to maximize accessability to

those most likely to require adjustments or servicing after their installation.

Figure 5-4 shows an attractive alternate that may be used when found

desirable. The containment shroud is formed by taping down a plastic sheet at

the points where it contacts the diaphragms and along the gunwale section of

the transport shell. This converts an entire longitudinal section to a con-

tamination protected volume in a simple manner that provides easy access if

required.
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Figure 5-4. CONTAMINATION SHROUD ARRANGEMENT

A few of the planned payloads carry propellants in large enough quantities

to require venting. Figure 5-5 shows three alternate means for venting these

propellants through the Tug or the Orbiter. In keeping with the objective of

decoupling multiple payload integration, Tug prelaunch activity, and Orbiter

prelaunch activity, NSI recommends that all payload package support should 
be

through Tug or Orbiter and then overboard.

THRU TUG TO ORBITER

DIRECT TO ORBITER THRU TUG ADAPTER
FROM PAYLOAD SHELL TO ORBITER

Figure 5-5. SPACECRAFT PROPELLANT VENTING OPTIONS
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If more than one payload in the transport shell requires venting, then

collection lines will be fabricated to channel all vents to the Tug umbilical

point for vented propellants.

5.5 SEPS SAFETY AND INTERFACE CONSIDERATIONS IN RELATION TO ORBITER

Safety and interface discussions will be considered in the following

sequence:

* SEPS as one of a multiple payload group for delivery in terms of

Orbiter safety requirements and interfaces

* Multiple payload avionics potential requirements

* Gases and liquids venting and dumping requirement.

Figure 5-1 shows SEPS with other schematically represented payloads in a

transport shell with IUS in the Orbiter cargo bay. Tug would mount SEPS

similarly. The transport shells for IUS and Tug are essentially identical and

could be developed for interchangeability. SEPS is mounted on a standard GPME

diaphragm and has no direct structural interface with the Orbiter or IUS-Tug.

SEPS, if nominally fueled for the initial deployment mission, has a mass

of about 2725 kilograms (6,000 pounds). SEPS contains only four fluids:

pressurizing N2, battery fluids, mercury,.and hydrazine.

The pressurizing N2 for the mercury expulsion system has a peak charged

pressure of 28 N/cm (40 psia). The N2 is contained inside the mercury pro-

pellant tank; tank design limit load is controlled by the 9 g Shuttle crash

load factor. Design for containment to peak cargo bay temperatures is a

negligible mass penalty. Pressure relief venting to the cargo bay interior is

acceptable. No caution and warning signals or control from the orbiter is

required.

The N2 for ACS has a peak charge pressure of 138 N/cm
2 (200 psia) and is

also within the pressure shell of the N2H4 tanks. The tanks contain 109 kg

(240 pounds) of N2H4 . The tanks will be designed for containment of N2 and

N2H4 at peak cargo bay temperatures. Backup N2 pressure relief vent to the
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cargo bay will be used for added safety. No propellant dump for this quantity

of N2H 4 is required. The only way in which the N2H 4 can cause overpressure is

by thermal heating to boiling temperatures, catalytic decomposition, or spon-

taneous decomposition at high temperatures. Catalytic decomposition would

occur when the catalyst is first inadvertently introduced so it is not an

orbiter inflight problem. Heat required for the remaining two catastrophic

situations (with insulated tanks) requires a fire in the cargo bay.

Because of the space thermal requirement, both propellant tanks are insu-

lated. No condition that has not destroyed the Orbiter will cause monopro-

pellant decomposition of the N2H 4 in SEPS. No C&W or command lines to/from

the Orbiter are required.

SEPS, like most long-life spacecraft, uses Nickel-Cadmium batteries which

are sealed. The batteries will be designed for containment. No C&W or command

lines to/from Orbiter are required.

SEPS is designed to have no separation or deployment ordnance. All sepa-

ration functions are controlled by reversable motors or with the aid of the

manipulators. The Orbiter may require status information and command control

for latching.

5.6 IUS-TUG AVIONICS SUPPORT TO SEPS

NSI believes the most desirable approach to avionics support for all pay-

loads mounted on Tug is from Tug, since the support must be continued after

separation from the Orbiter. During ascent, Orbiter must support Tug by

provision of primary power and data links into Tug.

The following requirements for avionics support of SEPS from Tug exist:

* During preluanch after the transport shell has been mated to Tug
and after installation in Orbiter:

* 150 watts power and 1,000 kbits/sec digital data during brief

flight readiness status check periods. Thermal control power

of about 200 watts could be required depending on temperature
of Orbiter's N 2 purge gases. Presumably such low temperature N 2
will not be used.

5-9



NORTHROP SERVICES, INC. TR-1370

* During Orbiter ascent and onorbit prior to Tug deployment:

* Nominally no support; 200 watts periodically if required for

thermal control

* During Tug deployment, parking orbits and ascent to SEPS initial

parking orbit:

* 200 watts primary power for thermal control

* SEPS initial startup and transfer of initial payload to SEPS pay-

load mast:

* 600 watts, uplink data rate 1 kbit/sec. This support require-

ment would last approximately 1 hour, 1,000 watt peak power

required, total energy required 3kw-hours. SEPS own communi-

cations system provides the required TV and other down data

rates.

This deployment and initial payload transfer sequence is shown schema-

tically in Figure 5-6. All of the above requirements are within Tug proposed

capability. As indicated in Figure 5-6, one of the SEPS phased array antennas

is exposed and SEPS' own systems can supply the capability.

A THIS ARM
PLACING

PLON MAST

INITIAL ORBIT FOR SEPS DEPLOYMENT

THIS ARM PROVIDING
TV VISION OF MAST

DEPLOY PAYLOAD MAST ARMS
RELEASE DIAPHRAM LOCK E

ONEARMFORTV
VISIBILITY AND ONE SEPS DEPLOYING WINGS TUG READY FOR

FOR REMOVAL OF PL SET FOR DEPARTURE RETURN TO SHUTTLE

Figure 5-6. PAYLOAD TRANSFER INITIAL SEPS SORTIE
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5.7 TUG-IUS SUPPORT TO PAYLOADS IN TRANSPORT SHELL

McDonnell Douglas and General Electric, teamed for the MSFC directed

"IUS/Tug Payload Requirements Compatibility Study," reported in their midterm

review the results of a payload design engineering committee analysis to

determine nominal, maximum, and minimum values of Tug payload support require-

ments. The committee was composed of a group of experienced payload design

engineers selected from the GE staff to provide specific support for that

study group. Recent results of this study indicate that only payload status

and subsystem viability checks will be conducted until the payload spacecraft

are deployed. All spacecraft payload demands, on that basis, are reduced to

data rate levels of less than 1 kbit/sec and power levels to 200 or less

watts.

The Tug and IUS proposed baseline capability is therefore adequate for

operation with the larger number of payloads that will be on Tug for its

payload transfer mission to SEPS.
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Section. VI

EARTH ORBITAL SEPS CONFIGURATION AND
SUBSYSTEM DESIGN IMPACT ANALYSIS

6.1 BACKGROUND AND GENERAL CONSIDERATIONS
The original study objective for this task was to:

* Adapt the payload handling, servicing, transporting, and maintenance
concepts to be developed in the study to the initial baseline SEPS
derived from previous studies

* Assess the "design impact" that the adaptation above, the interface
influences with STS, and the support of payloads during delivery,
would have on "baseline" subsystems.

Several situations existed and more developed which resulted in a depar-

ture from the original concept. First, the previous study documents purporting

to define the baseline SEPS did not establish a clear "baseline" at the sub-

system level or did not provide enough design definition to allow a meaningful

"impact" assessment to be made.

Second, this study's assessments of technology and evolution of new

concepts, plus NASA's in-house evolving concepts of the subsystems, so departed

from the rather nebulous initial baseline that it was no longer a meaningful

reference standard.

Due to these factors, this section will discuss the rationale for selec-

tion of certain configuration characteristics and/or the technology assessments

leading to NSI's suggested approach to a subsystem design. Reference to a

"baseline" SEPS will simply mean reference to a 25 kw power level SEPS with the

thruster subsystem performance specification provided by NASA, and to mass char-

acteristics derived from Rockwell International's prior "Exhibit E" studies.

NSI, for reasons described in several sections of this document, recom-

mends that SEPS design minimum power level at 1 astronomical unit (AU) should

be at least 50 kw. NASA, however, directed that emphasis be placed on 25 kw

power level configurations. Discussions in this document and configurations

shown are at the 25 kw level except for discussions of trade studies.
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In our technology assessments and our search for germain design detail we

studied large volumes of material some of which contained "trade studies" that

were largely statements of engineering judgement or preference by the individ-

uals authoring the reference document. There were several cases where we did

not challenge the data base or what the principal contending design approaches

were, but we did disagree with the conclusions and resultant recommended

design concepts. Simply put, our assessment of the source data and the state

of technology plus our engineering judgment led us to different conclusions

than those presented by the authors of the source documents.

6.2 EARTH ORBITAL (EO) SEPS CONFIGURATION DESCRIPTION

The 25 kw configuration evolved in this study is shown on Figures 6-1(a)

through 6-1(c). The configuration is dictated by considerations of flexibility

in mission application as a payload servicing and transport element of STS, a

spacecraft bus for scientific missions, and for earth orbital multimission

technology applications. Little real conflict in desired characteristics

occurred between these missions with the exception of the requirement to place

certain sensor packages on deployable structures.

The deployable structures are necessary so that sensors can see around the

payload packages. Essentially all of SEPS structural mass except the ACS tanks,

certain sections of the power processor support structure, the extendable mast,

and the extendable section of the solar array support spars is dictated by the

Orbiter safety requirement that structures remain intact under the Orbiter's

9g crash load criteria. The deployable structures are, therefore, very rigid

for any loads they may see during space operation. Structures which support

sensors must be insulated to avoid thermal distortion when varying areas are

exposed to direct sunlight or to dark space.

Figure 6-1(a) is an end view of SEPS looking in on the payload transport

mast side. This component was described in Section 4. It is mounted on a

structure that allows it to be hinged inboard for SEPS initial launch and

retrieval. Once in space and deployed, the mast housing and support structure

remain in place throughout a complete mission cycle.
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Each solar array wing is deployed on two spars. The spars are identical

in concept to the transport mast. On Figure 6-1(a), the spar which deploys

the solar array wing from the launch position to an inflight position is shown

deployed to allow the wings to clear a 4.6 meter (15-foot) diameter payload.

The spars can be extended further to clear elements of a payload that require

deployment outside the 4.6-meter launch envelope during the final checkout of

the payload before SEPS releases it. The housing and extension-retraction

drive of the spar is located inside SEPS body and is not visible on Figure 6-1.

The solar array wing assembly, mounted at the outboard end of the deploy-

ment spar, is an independent assembly comprised of the rotation mechanism that

allows it to be oriented normal to the sunline, the solar blanket storage

cylinder, the wiring harnesses and switch assembly, and the biconvex spar

solar blanket deployment and retraction mechanism.

Biconvex spars were selected for these assemblies because of their sim-

plicity and their high rigidity in torsion, bending, and compression relative

to other storable mast concepts. We assessed them as having the highest poten-

tial reliability of any of the mast concepts described in past studies or in

published articles that we surveyed. Considering the fact that the blanket

spars do not require an EI in the direction parallel to the blanket as high as

in the normal direction, these biconvex, edge welded spars were as low in mass

as other concepts. SEPS effectiveness is not particularly sensitive to inert

mass; it is very sensitive to reliability.

The high gain antenna is a phased-array, and the beam is electronically

steered. The phased-array and the Interferometric Landmark Tracker (ILT) are

located as far outboard as feasible without requiring mounting on a deployable

structure. The inherent redundancy in phased arrays and their lack of moving

parts resulted in extremely high reliability.

There are two scan platforms, each mounted on a deployable structure, and

located on opposite ends of SEPS. They would normally be used in conjunction

but missions can be completed with only one functional platform. This combina-

tion of dual scan platforms and dual antenna arrays provides a fail operational

and fail acceptable combination for fulfilling earth orbital sorties.
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The equipment module mounted above the thruster subsystem's power proces-

sors and control electronics is an independent module. The equipment module

contains all of the systems' intelligence, housekeeping, and payload support

subsystems. The equipment module structure is attached to the thruster sub-

system structure such that the two structures after final assembly form an

integrated airframe. Figure 6-1(b) shows a side view and a view looking in on

the manipulator mounting end of SEPS. The manipulators described earlier are

mounted on deployable structures to locate their bases outside the 4.6-meter

diameter payload accomodation area. In this end view, the solar arrays are

shown in the fully stowed position as they would be for launch.

The star trackers are located as far forward as clearance with the manipu-

lator mount deployment structure permits. The second phased-array antenna is

mounted just below the star trackers. Missions can be completed with only one

active antenna, but some otherwise unnecessary attitude maneuvers may be

required. Figure 6-1(c) is a top view of the EO SEPS configuration.

The submodules of the thruster subsystem power conditioning and control

system have no preferred orientations as long as the orientation does not inter-

fere with maintaining their proper thermal environment, test, and maintenance

accessibility. The same is true of the thrusters themselves except that their

installation pattern must be such that flight control torques are efficiently

applied. Many suitable arrangements are possible with little, other than

personal preferences, to dictate a choice between them. The best arrangement

will be a function of the detail design characteristics of the submodules.

The square 3 by 3 thruster array shown, with each thruster fully gimballed,

is as attractive a general purpose array, all things considered, as any other.

Insulation around the thrusters and other elements of the structure to which

ACS components requiring thermal conditioning are attached, is not shown on

the figures. The 3 by 3 thruster array was a Rockwell International concept

and a characteristic of the initial study baseline designated by MSFC. NSI

invites system planners interested in detail assessments of configuration

evolution to review Figure 6-1(a,b,c) thoughtfully for its other merits and
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faults. It is requested that you contact the study manager and discuss with

him suggestions for improvement.

6.3 EXPENDABLES REPLENISHMENT

The value of replenishing SEPS' mercury propellants is obvious from compar-

ison of the propellant mass required to utilize the specification 20,000-hour

thruster life (2,900 kg) to the total dry weight of SEPS (1,260 kg). Since

many multiple payload packages are in the range around 3,000 kg, carrying a

nearly full propellant tank in the first few sorties increases trip time by

more than 50 percent. NSI's assessment of the technoldgy is that most SEPS

thrusters will have actual lifetimes of 50,000 or more hours if a moderately

well-funded thruster technology program were oriented toward guaranteeing it.

Developers of payloads planned for the operational period from 1981 onward

expect their satellites to have functional lifetimes of 10 years or more.

Several satellites now in orbit have been functional from 6 to 9 years. No

item of SEPS is required to function through a large number of cycles. Only

130 payloads are deployed in a total of 29 sorties to accomplish the 10-year

long mission model. SEPS performs other servicing and possibly independent

space bus missions in addition to the transport sorties, but the total number

of cycles for any mechanical device is low in terms of cycle life for modern

mechanical devices. Although the program inventory is not planned on the basis

of 10-year life expectancy for SEPS, NSI considers it probable that a 10-year

operational life could be achieved or exceeded. SEPS #1 may have some early

failures as a result of design oversights or due to incorrect information on

the design environment of some components, but retrofitted SEPS #2 and succes-

sors should achieve life goals.

In view of the simplicity that can be achieved in the propellant storage

systems and in methods for their replenishment, it appears highly desirable

that the reduced trip time potential and capability for longer stay time on

orbit should be exploited by providing for replenishment.

From previous descriptions of the manipulator system and SEPS configura-

tion, SEPS inherent capability for self-replenishment is obvious. The sequence
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is shown on Figure 6-2. The relatively small amounts of ACS propellant (N2H 4)
and the high density of the mercury propellants result in such small volumes

for the replenishment kits that they have frequent opportunities to be carried

on IUS-Tug sorties where the payloads are not using all the available cargo

space. Thus, flights dedicated solely to SEPS replenishment were never

required throughout the entire 1981 to 1991 timeframe encompassed by the

reference mission model.

Hg REPLENISHED
AT BEGINNING, OR ANY POINT, IN PAYLOAD TRANSFER,
REFUELING OPERATION MAY BE INITIATED

N2H4
REPLENISHMENT

Hg HOSE EXTRACTED

Figure 6-2. REFUELING SEQUENCE

The simplicity of the refueling functions can be envisioned when the

reader considers the characteristics of the gas (N2 ) pressurized, blow down

propellant supply systems. Forcing the replenishment propellants into the

tanks automatically compresses the N 2 to its original pressure. The N 2 is not

expendable. The tanks have an internal flexible barrier separating propellants

and gases. When fully fueled, the barriers are expanded against internal per-

forated tank bulkheads which prevent the flexible barriers from being over-

pressurized by the refueling systems. The mercury system operates anywhere in

the range from 0.42 kg/cm 2 to 2.1 kg/cm2 and the ACS system in the range from

3.5 kg/cm 2 to 7 kg/cm 2
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The refueling kits are simple blow down N2 pressure tanks like the SEPS

systems; they refuel with blow down pressures equal to the SEPS fully charged

system pressures. The refueling tanks are mounted in bearing rings with the

hose storage drums fabricated onto the tanks. Hose tensioning clock springs

hold them in the wound tight condition. Figure 6-3 shows the mercury replen-

ishment kit. The N2H4 replenishment kit is similar.

For refueling, a manipulator simply grasps the refueling probe at the end

of the hose and pulls out the required length of hose to insert the probe into

the proper refueling receptable on the SEPS side panel. Flow limiters prevent

too rapid refueling of the systems in the initial phase when the pressure

differences between supply and SEPS tanks are moderately high. Refueling is

complete in about 2 minutes. The probe is retracted from the SEPS panel and

released, the refuel kit tensioning spring rewinds the hose on the drum, and

the operation is complete. Since the tanks and hose drum rotate together,

there are no sliding or rotating liquid or gas seals. The only potential leak

point is when the probe slides into the SEPS receptacles. Proper design can

make the risk of payload contamination from spillage negligible.

An alternate approach to replenishment is the interchange of a full propel-

lant supply kit for an empty tank in SEPS. This approach is equally effective

with the hose refueling technique but was rejected because the manipulator

operations required for tank interchanging are more complex than for the hose

replenishment system. A single potential leak source (tank's probe into supply

line) also exists for this approach. Figure 6-4 shows the component configura-

tion for an interchangeable tank.

6.4 GROUND MAINTENANCE VERSUS SPACE MAINTENANCE

The manipulators with a set of in-space changeable hands or end effectors

are extremely versatile payload servicers, payload element deployment assistors,

and malfunction repair tools. The broad range of applications of manipulators

in automated production and assembly operations and their uses in nuclear

reactor core and fuel element recycling attest to the well developed state-of-

the-art. SEPS difference is that an RF data link is inserted between hand
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controllers, computers, and TV cameras that are hard wired to the operators'

console in the industrial operations mentioned above. SEPS self-maintenance

is certainly feasible.

NSI does not believe that the high reliability and long service life

expectancy of properly designed SEPS subsystems warrant design for in-space

maintenance in a spacecraft that can be retrieved and returned to earth for

repair. If further analysis indicates in-space maintenance to be desirable,

SEPS physical and functional characteristics are such that it has the inherent

potential to be an "Erector Set" type spacecraft. Various subsystems can be

attached to a core structure. Figure 6-5, a modification of some NASA tech-

nology program designs, illustrates this. Specific design for in-space main-

tenance, if it were an initial program requirement, should not be expected to

increase total program cost and could actually reduce DDT&E program cost if

program management exploited the resultant characteristics of the system in

a diligent effort to reduce the cost of development, integrated systems life

tests, and flight readiness tests. Design for in-space replacement of selected

modules or equipment assemblies may be found desirable as detailed flight

systems development programs are initiated.

Without further discussion, Figures 6-6, 6-7, and 6-8 are presented so

that the program concept assessor, with a little imaginative consideration of

design detail offered by present technology, can envision the flexibility of

the manipulators for many types of functions: space experiment interchange on

laboratory type spacecraft, spacecraft servicing, repair of other spacecraft,

and replacement of SEPS components if such design approach should later prove

warranted.

6.5 CHOICE OF POWER LEVEL FOR SEPS

The next most significant configuration definition choice is associated

with SEPS power level. The decision becomes largely a matter of judgment since

no clear mission requirement sets a definite minimum power level in the range

of practical choices, and no technology factor or cost factor produces a sharp

step in development difficulty or cost as power increases.
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The transport capability and operational flexibility of SEPS with the STS

is almost directly proportional to the power level. To demonstrate this, NSI

developed complete Systems Operational Profiles for accomplishing the reference

mission model. The 25 kw NASA baseline profile is shown on Figure 6-9. A

profile for a 50 kw SEPS is shown on Figure 6-10. Figure 6-11 shows the sortie

trip times required by a 25 kw SEPSto accomplish delivery and retrieval mis-

sions in conjunction with a 9.1-meter H2 02 high performance Tug. The solid

curves are the theoretical times required for SEPS to complete a mission with

the maximum payloads Tug could bring to the SEPS/Tug rendezvous orbit for the

Tug one-way velocity increments shown by the abcissa.

The cross-hatched areas indicate the range of Tug velocity increments

actually required to accomplish the mission model. The black dots are indi-

vidual sortie trip times calculated with radiation degradation effects. Figure

6-12 shows the sortie trip time savings of a 50 kw SEPS relative to the 25 kw

SEPS. The system operational profile, as illustrated on Figure 6-9, does not

utilize the full capability of a 25 kw SEPS until 1989 and does not require

two SEPS in orbit until 1990. Therefore, use of a 50 kw SEPS saves only two

more shuttle flights than a 25 kw SEPS. The advantage of increased power for

earth orbital operations with the reference mission model is therefore due

only to:

* Reduction of the time required for execution of individual sorties

* The speed with which SEPS could respond to unplanned revisions of

flight schedules

* Quick response to special demands for maintenance or retreival of a
malfunctioning satellite.

Conversely, the DDT&E cost to develop a 50 kw SEPS was estimated by NSI to be

only 7.5 percent greater than for a 25 kw SEPS so that a very small additional

investment produced a transport vehicle of nearly twice the inherent capability.

Figure 6-13 shows a size comparison between a 50 kw and a 25 kw power level

SEPS. Table 6-1 shows a summary of DDT&E cost breakdown with the incremental

cost for development of the 50 kw system. Note that the cost increase is

essentially all in propulsion areas. The majority of that cost is due to the

present high cost of solar cells which can be drastically reduced with a tech-

nology program aimed at production cost reduction for both the solar cells and

their assembly into arrays.
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Table 6-1. COMPARISON OF 25kw TO 50kw BASIC COSTS
(SEPS DEVELOPMENT AND 1ST UNIT COSTS)

(Dollars in Millions)

DEVELOPMENT FIRST UNIT COST
COST ELEMENT 25 kw A FOR 50 kw 25 kw A FOR 50 kw

STRUCTURES & THERMAL CONTROL $ 4.8 $ 1.2 0.1

PROPULSION 9.1 2.0 0.8

POWER DISTRIBUTION 1.0 0.4

SOLAR ARRAY 7.8 5.8 6.1

DATA MANAGEMENT 3.4 1.0

COMMUNICATION 2.2 1.2

ATTITUDE CONTROL/N&G 9.2 2.0 0.2

INTEGRATION & TEST CHECKOUT 6.7 1.0 1.1 1.0

TEST HARDWARE 21.3 6.5

GSE 5.0

SOFTWARE 4.5

LOGISTICS 0.5

SE&I 6.8 1.4

PROGRAM MANAGEMENT 6.9 1.4

BASIC SEPS $89.2 A7.5 $17.5 A8.2

A FOR EARTH ORBITAL FUNCTIONS 8.3 1.0

97.5 18.5

A FOR TUG PAYLOAD SHELL AND
DIAPHRAGMS 2.5 0.8

$100.0 A% 7.5 $ 19.3 A% 42
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For the planetary missions the rate of gain in usable net scientific pay-

load as power level increases varies considerably with the mission. In addition,

the gains are sensitive to the mass-to-power ratio so that design approaches

for SEPS thruster subsystem that result in high mass-to-beam power ratios, or

unjustifiably conservative mass estimates, will cause apparent "optimum" power

levels to be considerably lower than the true optimums. Even on the most con-

servative basis for mass-to-power ratio, such as used in the Rockwell Inter-

national 1972 and 1973 studies, trends for continuing growth in available net

payload are indicated as power levels extend beyond 25 kw.

The planetary science packages conceived for most of these missions do

not indicate the need for the higher payloads associated with the higher powers
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desirable for a SEPS operating in earth orbit. It is the opinion of this

author, at least, that the planned science packages are rather minimal and that

a great deal more useful information would be obtained if the available payload

mass allowed by the higher powered SEPS were used to fly some modification of

the higher resolution, versatile sensors and instruments contained in proposed

satellites such as the Synchronous Earth Observing Satellite (SEOS) and other

environment determination and monitoring satellites.

Figure 6-14 presents a review of typical planetary missions from earlier

SEPS work by Rockwell International. The curves show parametrically the

influence of trip time and power level. The ordinates labeled "Approach Net

Mass" are all masses (SEPS nonpropulsive plus gross payload) in addition to

the mass of the solar arrays and the thruster subsystem. If a standard core

SEPS were used as the spacecraft bus, the gross payload would be approximately

net mass minus 500 kilograms. For the Jupiter Orbiter the payload must include

the chemical retrorockets for a capture maneuver into a highly elliptical

Jovian orbit.

The four sets of mission charts demonstrate two salient features. In all

cases, increased power increases payload. For the missions beyond 4 AU, SEPS

can provide only limited payload support power if developed at the 25 kw of

solar power level.

In the case of the Jupiter Orbiter mission, increased power beyond 25 kw

would allow SEPS thrusters to operate during the approach to Jupiter, aiding in

the capture maneuver, and also allow SEPS to modify the Jovian orbit for close

inspection of each Jovian moon. When not thrusting, more power is available

for communications so that high resolution imaging can be conducted in shorter

periods of time. All of Rockwell International's work presented on Figure 6-14

was conducted with very conservative mass-to-power ratios based on processing

screen power with the associated losses and weight penalties. The Jupiter

missions, which chemically retro SEPS into the capture orbit, will benefit

greatly from improved (lower) mass-to-power ratios.
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Figure 6-15 shows NSI's analyses of SEPS potential for an exciting new set

of "out-of-the-ecliptic" missions that allow examination of the solar magnet-

osphere and solar surface with high resolution instruments over the entire

solar sphere. In the particular example shown, the SEPS is launched by a

Titan Centaur vehicle. The curves demonstrate the effect of three parameters.

The curve showing the higher heliographic inclination versus mission time

illustrates the advantages of increased power, better power-to-mass ratio by
taking thruster screen power directly from the solar arrays, and the value of
the option of operating at a factor of 2 greater (2200 Vs/1100 Vs) thruster

screen voltage to achieve an Isp of 4243 seconds rather than a baseline 3,000

seconds. The higher achievable inclination for the upper curve is due solely

to the higher Isp and lower mass-to-power ratio from direct use of solar array

power for screen power.

SEPS INCLINATION 0 K-XI BL I, 72: . YA~ S...

ADVANTAGES OF HIGHER POWER & pw

6 YEAR NISSION

ECLIPTIC PLANE

25 KU 50 K

BASELINE I PBL EIspSEPS
INERT MASS 1373 KG 1713 KG
PROPELLANT 2289 KG 2240 KG
BURN TIME 18955 HOURS 15534 HOURS
COAST TINE 7324 HOURS 10746 URS 90

CENTAUR 
SEPS/? L isp

INERT MASS 1859 KG 1859 KG 8n n KW SASE F RRAY

PROPELLANT 7722 KG 7431 KG DIRE I POF S.A

BURN TIME 25.90 SEC 249.15 SEC 2 70 -- LIN S

?5 'A S ALARR APY5
NTE: SUN'S EQUATORIAL PLANE INCLINED 7 DEGREES 60

TO ECLIPTIC AND ORIENTED SO AS TO ADD
DIRECTLY TO INCLINATION WITH RESPECT TO 50
THE ECLIPTIC PLANE. .

40

30 CIRCULAR ORBITS
OPTIMUJ PARKING-ORBIT INCLINATION-

SEPS TANKS SIE[D
20 -- FOt-R- 20,000 HR. THIIRUSTERS

MISSION TIMF YFARS

Figure 6-15. "OUT-OF-THE-ECLIPTIC" MISSIONS FOR SEPS

A design approach similar to that used on the 50 kw system but at a 25 kw

level would finally achieve the 80-degree inclination but in a much longer

trip time.
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This discussion has not covered all the implications of Figures 6-14 and

6-15. Thoughtful perusal of these figures will indicate that desirable char-

acteristics for a standard core SEPS to achieve enhanced planetary mission

suitability are:

* Improved average thrust-to-mass ratios

* Option to operate at high or low Isp to match requirements of a

specific mission phase

" Reserve power to support larger payloads and higher communications
rates at extended distances from the sun

" Maneuver power to extend scientific mission capabilities after
arrival at the target planet.

Improved average thrust-to-mass ratio can be achieved by:

* Increased solar array area and higher kw/kg values for the arrays
by fuller exploitation of present technology

" Taking thruster screen power directly from the solar arrays and
improving power processor efficiency for the remaining =20 percent
of the power

* Fuller utilization of the ion thruster's inherent capabilities
indicated by the last several years of NASA's technology program.

6.6 RELATED TECHNOLOGY ASSESSMENTS

NSI has reviewed the available technology base derived from NASA's

thruster technology and research programs, has reviewed industrial developments

of devices suitable for solid state power processing and has reviewed the lit-

erature on solar cell technology. The conclusions of this assessment are:

* Thrusters have the inherent ability to operate over screen voltage
ranges of about 800 v to more than 2800 v and at beam currents cor-
responding to 0.5 amp to 4 amps in a 30-centimeter thruster

* Solar arrays are both feasible and desirable direct sources of
thruster beam power

* Higher voltage solar arrays (1200 v to 2400 v) are both feasible
and desirable

* The potential exists for much lower cost, higher reliability, and
higher efficiency solar arrays than those assumed in prior studies

* Higher input voltage power processors than those baselined for prior
studies (200 v to 400 v) are feasible

* Exploitation of the technology base will provide a SEPS of signi-
ficantly greater mission flexibility than the baseline derived
from previous studies.

6-30



NORTHROP SERVICES, INC. TR-1370

In support of the thruster conclusions, Figure 6-16 shows operating char-

acteristics of 30-centimeter thrusters in NASA. technology program tests com-

pared to the baseline specification for thruster performance.

6.7 THRUSTER SCREEN POWER DIRECTLY FROM SOLAR ARRAYS WITH SELECTABLE Isp

This subsection presents NSI's rationale for recommending the use of

thruster screen power taken directly from the solar arrays. Detail designs

of the alternate approaches are beyond the scope of this study due to the

funding level of $130,000 and the broad coverage of the system and its opera-

tion required by the work statement. NSI reviewed the basic physics and char-

acteristic phenomena associated with the functioning of both the thruster and

the solar array. The factors involved in the engineering design and operation

of the stage with thruster screen power taken directly from the solar arrays

were assessed. The assessment showed that several strong factors motivated

the direct screen power approach and only relatively weak considerations were

against it.

6.7.1 Thruster Functional Characteristics

A proper assessment of the pros and cons of screen power supply alternates

depends upon an understanding of the thruster's operation and control. An

exhaustive definition of thruster functioning is not necessary. The reviewer

with command of a little basic physics can establish the details to the extent

he desires by analysis and extrapolation of the characteristics of the thruster

depicted on Figure 6-16. Voltages indicated are for operation at baseline

nominal condition (3,000 sec Isp).

The significant physical factors are:

1. The screen power is approximately 75 to 85 percent of total power

supplied to the thruster depending upon the screen voltage (Vs) level selected.

Efficiency increases significantly as screen voltage increases; this is illus-

trated on Figure 6-17. The screen power is used to pump electrons out of the

thruster's internal enclosure (the perforated screen grid is the aft closure

of this volume) to the neutralizer so that the internal mixture of Hg vapor,

electrons and Hg+ ions are maintained at the positive voltage level, Vs, above
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Figure 6-16. SEPS THRUSTER SCHEMATIC
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the thruster outer housing potential which is also the stage potential. The

current in this circuit results from the rate at which Hg+ ions are extracted

through the screen grid from the thruster internal enclosure. The screen

voltage, Vs, is essentially the net accelerating voltage. In some descriptions

of the functions of electron bombardment, Hg ion thrusters, Vs is referred

to as the net accelerating voltage because the net energy of the ions in the

thruster discharge beam is due to their repulsion from the positive screen

grid after the ions have been extracted through it by the negative electro-

static field of the accelerator grid.

2. The aftermost thruster grid, usually referred to as the "accelerator

grid," is misnamed. Its real function is to extract the Hg+ ions from the

internal cavity of the thruster; focus their paths so that the ions do not

impinge on the solid parts of either the screen grid or the accelerator grid;

and focus the small individual beamlets so that the composite, neutralized

total thruster beam is, as nearly as practicable, a cylindrical beam.

In the ideal case, no power is required to maintain the accelerator grid

potential because the positive work done in accelerating ions toward the, grid

is equal to the negative work done in decelerating the ions after they have

passed through the accelerator grid. This is illustrated by the plot of ion

energy versus position relative to the grids shown on Figure 6-18. In the

practical case, the ion beamlet focusing is not altogether perfect so some ions

do impinge on the accelerator grid. Furthermore, there is some finite vapor

pressure of the un-ionized Hg atom that causes them to leak through the holes

of both grids. When neutral atoms with this thermal energy are impacted by an

accelerated high energy ion a "charge exchange" may take place so that the

high energy ion becomes a neutral atom and the low energy atom becomes a single

or multiple charged ion. This new charge exchange ion will be accelerated

toward the negative accelerator grid in an unfocused manner and will impact it

causing spluttering damage to the grid. Except during start transients, current

flow due to the unfocused ions results in only a few milliamps of current in

the accelerator grid circuit of a properly functioning thruster.
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3. Because of complex plasma charge and electrostatic field effects, the

negative accelerator grid potential has only a second order influence on the

rate at which ions are extracted through the screen grid holes from the internal

enclosure of the thruster. The first order influence on the number of ions

extracted is the Hg+ ion density just behind the screen grid holes.

4. Thrust is proportional to the mi of ions extracted and the square root

of the ion energy, -eVs, screen current is proportional to the i of extracted

ions.

Because of the above factors, the following situation exists. At a

specific Vs, thrust is proportional primarily to beam density which is propor-

tional to Hg+ density internal to the thruster which is proportional to the Hg

atom vapor pressure, assuming a minimum required number of bombardment electrons

is produced by the cathode discharge arc. Therefore, both the thrust and

resultant screen current are controlled by main vaporizer temperature control.

Consider the characteristics of the device just described. Its operation

is stable. Large surge currents can not be produced in either its screen grid

circuit or its accelerator grid circuit by voltage peaks.

Screen current is controlled by a rate of ion production primarily con-

trolled by a rate of vaporization of main feed Hg propellant so that no large

instantaneous current surge can be demanded of its power source. Screen volt-

age need only be DC, desirably ripple free. Screen voltage does not need to

be controlled closely since it is not a primary control of the thruster.

Thruster specific impulse is directly proportional to the'Fs; therefore,

the specific impulse at which the thruster operates can be selected simply by

switching to a selected Vs.

Although not obvious from the schematic on Figure 6-16, it is a fact that

the beamlet focusing for thruster operation at minimum design Vs and Va estab-

lishes the screen and accelerator grid geometry tolerances. In general, thruster
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beam optics, efficiency, and lifetime are improved by operation at higher volt-

ages; and a given thruster may be operated at voltages up to 3 to 4 times the

design minimum with improving efficiency and lifetime effects.

Thrusters are subject to a transient phenomena referred to as "arcing."

This arcing, caused by a buildup of conductive contamination particles and

possibly splutter-generated particles, occurs between the closely spaced screen

and accelerator grids. Since the accelerator power supply circuit is designed

for currents of about 0.2 amps and normally operates at a few milliamps, the

arc must be extinguished to prevent overload of this circuit and the vaporiza-

tion of material from the screens.

6.7.2 Motivation Factors For Use Of Screen Power Directly From the Solar Arrays

Briefly, the motivation factors for use of direct screen power are:

* Screen power processors are only 92 percent efficient.

* Screen power is 75 percent to 85 percent of total thruster power.
Screen power processors, if used, are about 70 percent of the total

power processor weight; and they require about 70 percent of the
thermal control devices.

* Solar arrays are the most expensive single subsystem. Array cost and
weight will increase by about 9 percent due to inefficiency of the
power processors.

* Power processors will be more reliable, lower in cost, and lower in
weight if they are not required to process screen power.

* Stage A mass saving from all sources (reduced solar array weight, less
thermal control and PC weight, less stage structure, and so forth) as
a result of using direct screen power is about 20 percent, or, con-
versely, the A power gain for the same mass is about 26 percent.

* Desired Isp ranges may be selected to match those desirable for each
mission phase of a specific mission without the penalty associated
with power processors that must operate over combined ranges of both
high output voltage and high currents.

Figure.6-18 shows parametrically the relationship between SEPS configura-

tions with three different approaches to the thruster subsystem. The basis for

the weight scaling laws were SEPS weights from Rockwell International's Exhibit

E studies in 1972 and 1973. The three approaches are:

1. All thruster power is processed with input voltage from the solar
arrays to the PP in the range of 200V to 400V. Screen voltage is
1100 Vs, so nominal Isp is 3,000 sec. (Baseline system.)
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2. Thruster screen power is taken directly from the solar arrays, but
array panels are switched to keep screen voltage in the vicinity
of 1100 Vs so nominal Isp is 3000 sec. Weight growth is less than
1 above because 75 percent of array input power is not processed
and solar arrays are about 8 percent smaller.

3. Thruster screen power is taken directly from the solar arrays,
but panels are switched to keep screen voltage in the vicinity of
2200 Vs, so nominal Isp is ( x 3000 sec) 4243 sec. Weightq1100
growth with thruster input power is less than 1 or 2 because 85
percent of array power is not processed (thrusters have higher
electrical efficiency at higher voltages) and only 50 percent as
many thrusters and associated elements are required as for 1 or
2. The solar array area is about 13 percent less than for 1.

6.7.3 Some Aspects of Thruster Power Directly From the Solar Arrays Considered Negative
in Past Studies

NSI has conducted a diligent search to discover any significant negative
factors that offset the advantages described in the preceding paragraphs. None
of the negative factors were assessed as significant by NSI. The reviewer is
invited to investigate and make his own assessments.

The first negative factor presented was that "space plasma" will cause
more "leakage" over the face of solar arrays operating in the 1100V to 2200V
range than one operating in the 200V to 400V range. Space plasmas are insignif-
icant leakage sources above 300 km. SEPS will never operate below 300 km.
Furthermore, 0.025 mm of clear FEP sprayed or bonded over the solar array pro-
vides added mechanical strength and protection plus an insulation capability
to about 6000V.

The second negative factor presented was that switching the array panels
led to reduced reliability. If all power sources for thruster operation are
taken directly from the solar arrays (no power processing at all) switching
controls on the arrays can become quite complex. NSI suggests that only screen
power be taken directly from the solar arrays. Since the other miscellaneous
power requirements are small, the control convenience of power processors for
control circuits justifies the small losses associated with them. The "base-
line" system of past studies involved eight power processors, any one of which
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could be switched to any one of nine thrusters. This involves Vs switching at

1100 Vs. The two solar wings each had two main panels that could be switched

from parallel to series.

NSI suggests that each solar wing have three main panels and switching

arrangements that allow the wings to be series connected and allow selected

desired series-parallel arrangement of the panels to be switched. The thrusters

each have access to a common solar-array supplied bus. The required switching

is less than for the "baseline," and reliability is improved.

Some studies infer that power processors are required so that a deep space

mission needing to produce the maximum screen current (maximum thrust) for the

limited available power at large solar distances can be accommodated. Because

of the thruster grids beam focusing characteristics previously described,

there is a minimum suitable Vs for a given thruster design. This limits the

lower Vs range, thus limiting the maximum current that can be used when avail-

able power is low.

If the three major panels per wing previously suggested were designed for

600V per panel at 1 AU, the equivalent 1 AU operating Vs conditions would be

600 Vs (not desirable), 1200 Vs, 1800 Vs, 2400 Vs, or 3600 Vs. Thrust level and

Isp could be selected anywhere in this range to match the best choice for any

specific phase of a deep space mission (or earth orbital mission). As the SEPS

cruises out from the sun the available power decreases (refer to the previous

discussion in this section with charts of planetary mission characteristics),

but the solar cells are getting colder and their efficiency and output voltage

is increasing. The output of the 600V panels is progressively rising. When

their output reaches 800V to 900V all six panels could be paralleled to provide

maximum current and therefore maximum thrust for that low power level. Power

processors with their losses offer no apparent advantages and some very appar-

ent disadvantages in even greater weight and significantly lower efficiencies

if the range of Vs available from the arrays were to be provided by power

processors.
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Section VII

NAVIGATION, GUIDANCE,
AND RENDEZVOUS CONTROL SYSTEM

7.1 INTRODUCTION

In this section, the system selected by NSI for control of attitude and

guidance during cruise and rendezvous is presented. In making this selection,

use was made of previous studies by NSI and other organizations, so the final

system selection represents the result of an evolutionary process. The

requirements and baseline systems for Space Tug were also examined. Since

Tug and SEPS will coexist in about the same time frame, NSI suggests that

the two systems have as much commonality as is feasible in view of the

differing mission requirements.

The systems selected by NSI are described in the following subsections,

along with the rationale for the selections. The Guidance, Navigation, and

Control (GN&C) avionics are described in subsection 7.2, and the Reaction

Control System (RCS) in subsection 7.3. Factors which affect the require-

ments for these and related systems are described in subsection 7.4. In sub-

section 7.5, discussions of the related considerations of low earth orbit

operations and level of autonomy trade-offs are presented.

7.2 GUIDANCE, NAVIGATION, AND CONTROL (GN&C) HARDWARE

In the selection of hardware for the GN&C system, consideration was

given to the GN&C system planned for the Space Tug, which will be operational

over essentially the same time frame. It is desirable that as much common-

ality as possible be maintained between the two systems to permit the sharing

of development costs. To this end, designs for the Space Tug as defined in

the Baseline Space Tug Configuration Definition MSFC 68-M00039-2 and the

General Dynamics First Formal Performance Review Meeting, 11 December 1974

were examined. In the former study, avionics hardware includes:

* IMU with accelerometers (6)
(6 laser gyros in a "pair and spare" configuration)

* Laser rate gyros (6)

* Star scanners (2)
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* Sun sensors (2)

* Scanning ladar

* Slow-scan, low light-level TV with strobe lamps

* SUMC modular computer

* Steerable high-gain antenna.

The laser gyro unit is a Sperry development and is currently being

tested at MSFC. Bendix image dissector star trackers and Adcole sun sensors

are used. The Adcole sun sensor was also recommended by NSI.

The scanning ladar has already been baselined for SEPS. It can passively

acquire a target (in sunlight) at a 2,222 km range, and actively track and

range at 54 km.

The SUMC modular computer is an MSFC development, and is characterized

by a building block structure that can be configured for the specific needs

of the mission.

The General Dynamics design is similar, but uses:

* Dodecahedron laser gyro configuration

* Interferometric Landmark Tracker (ILT)

* Electronically steerable, phased-array antenna

The dodecahedron configuration was previously recommended by NSI using

conventional gyros. It has the advantage that it is operational with any

three gyros failed. With up to two failures, faulty gyros can be detected

and isolated.

In order to perform autonomous'navigation, it is necessary to determine

the line of sight to the earth, as well as to inertial references. Horizon

scanners can perform this task, but with limited accuracy. Also, horizon

scanners require rotating components which give weight and reliability prob-

lems. General Dynamics uses the ILT for this purpose. The ILT uses four

antennas in a square pattern, tracking with a high degree of accuracy, and
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can function with one antenna failure. It has been demonstrated, using a

dedicated beacon, at synchronous altitude on ATS-F. The device has also been

proposed by IBM for use by SEPS.

To obtain the gain required for the slow-scan TV without using high-

power amplifiers or steerable antennas, the General Dynamics Tug design uses

an electronically steered, phased-array antenna, consisting of 25 elements,

each driven by a 1-watt transmitting module. This antenna has a gain margin

of 3 db when transmitting at a 50 kbit/sec rate. Since each element is sepa-

rately driven, redundancy is very high.

The TV units used by General Dynamics are 500x500 CCD devices as recom-

mended by NSI for SEPS. The scan rate used is 15 seconds per frame. This

is acceptable for SEPS during rendezvous, since SEPS itself has very long

time constants. However, the scan rate would have to be more like one frame

per second during payload handling, unless this is automated.

The sensor field of view requirements of SEPS are stringent because it

is not spin stabilized (which would tend to ensure periodic viewing of refer-

ence bodies) and yet must function in arbitrary attitudes as demanded by the

thrust vector and solar pointing requirements.

This implies that all sensors should have a 4T solid angle viewing capa-

bility. However, attempts to achieve this with sensor-out capability results

in large numbers of sensors, and difficulties in selecting mounting locations.

The interference of payloads further complicates the problem, and requires

remote mounting of the sensors.

This problem can be alleviated if the requirement for continuous viewing

is dropped in favor of guaranteed periodic viewing; for example, once per

orbit. In addition, the need for high redundancy can be satisfied by per-

mitting multifunction operation of sensors as backup for other units. For

example, if suitable optics are provided, the spacecraft can be operated with

somewhat reduced performance by using one of the TV units as backup for a
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failed sun sensor, star tracker, ladar, or ILT (using the TV as a horizon

sensor).

The NSI design for SEPS uses essentially the same sensor hardware as

described here for Tug, with such changes as are necessary to reflect the

differences in missions. Primarily, the SEPS has less stringent accuracy

requirements than Tug, but more stringent reliability requirements.

The NSI GN&C sensor configuration is shown on Figure 6-1. Six laser rate

gyros are used in a dodecahedron configuration. (The second set used in the

General Dynamics Tug design and in the Baseline Space Tug Configuration

Definition is not needed.) No accelerometers are used. Instead, the thrust

level used in the navigation Kalman filter is estimated from ion engine

voltage and current. The 500x500 volt charge-coupled TV units are used, but

with scan rate increased to one hertz during payload handling. To accommodate

the higher bit rate, the phased array antenna is enlarged to 100 elements.

Two of the four TV cameras are mounted on gimballed computer-controlled

scan platforms. This outboard mounting provides greatly increased flexibility

of the cameras, and also relieves the problem of payload obscuration. The

ladar is mounted on the upper scan platform, along with the TV camera, to

which it is boresighted. This platform mounting of the ladar greatly improves

the flexibility of the system during operations near rendezvous. The attitude

of the platform is obtained by an optical angle encoder mounted on the gimbals.

A spacing of 4096 steps per revolution (12 bits) gives a resolution of 0.09

degree. Alignment bias errors are removed by the data filtering.

The remote mounting of the TV units and ladar introduces certain prob-

lems of thermal control, data interfaces, reliability, and sensor alignment

accuracy. However, the improved field of view represents a significant

advantage. Note that failure of the platform drive mechanism would not

completely disable the sensors.
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The use of the ILT presents certain problems. It places more stringent

conditions upon the attitude determination system. Also, the device may

require additional support hardware. An IBM study indicates that horizon

scanners and a radar altimeter may be needed as well. In spite of this,

NSI has tentatively baselined the ILT because of the advantages it offers,

under the assumption that the additional sensors are not required. Further

study is necessary, and if it is found that horizon scanners are required,

NSI would propose to use these without the ILT.

The number of sun sensors has been reduced from previous NSI designs

to two -- one on each solar panel. These units serve essentially to direct

the solar panels.to the sun (not, however, directly -- they interface with

the guidance computer). As a consequence, high accuracy and a wide field

of view are not required.

The two star trackers provide the high accuracy attitude reference,

and are mounted with a 90 degree included angle to optimize the accuracy

provided.

Although it is still experimental at this time, magnetic bubble memory

is suggested for bulk storage in lieu of tape recorder or similar mechanical

devices, which do not have a good history of reliability. The bubble memory

technology is almost certain to be sufficiently advanced to warrant its being

baselined for SEPS. In fact, it is rumored that bubble memory will be the

bulk storage system for the new generation of a major manufacturer, soon to

be announced.

A block diagram of the NSI NG&C system is shown on Figure 4-11. All

sensors feed the Kalman filter, which is a six-degree-of-freedom filter,

simultaneously estimating attitude and orbital state. Processing of the

TV outputs is provided to permit their use as backup sensors.

The General Dynamics configuration for the computer uses two 32-bit CPU's

and a 48 k word semiconductor memory. The hardware used for SEPS may be
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different, because for this application reliability is a more critical factor

than speed. NSI suggests the use of triple CPU's and a larger memory size.

The 32-bit format is useful for SEPS.

7.3 REACTION CONTROL SYSTEM

A reaction control system (RCS) using 26 thrusters was proposed by Rock-

well International in their Exhibit E document. The configuration is shown

symbolically on Figure 7-1. Note that the system has four thrusters directed

along the + x-axis, six along + y and two along + z. In terms of torques, it

can deliver couples from three pairs of thrusters about the + x- and + y-axes,

and two about + z. The number of thrusters used may appear excessive, but

represents the minimum number which permits normal operation with any single

thruster failed. The Rockwell RCS configuration has been retained by NSI,

with minor adjustments in mounting.

X

Figure 7-1. RCS THRUSTER CONFIGURATION
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It should be noted that not all of the y- and z-axis translation thrusters

can be used effectively. Since the payload is of necessity cantilevered

beyond the physical boundaries of the RCS thrusters, it is impossible to per-

form a y or z translation without inducing a couple, which must be bucked

by a pair of thrusters in pitch or yaw. In general, to obtain a translational

force equivalent to one thruster will require the firing of three others,

effectively lowering the specific impulse of the RCS fuel by the same factor.

This situation is unavoidable, and the only solution is to avoid y-axis or

z-axis translations. There are no specific requirements upon the RCS thruster

size.

The SEPS is a low-thrust vehicle with long mission durations, low

acceleration and large, flexible solar arrays. For these reasons, rapid

maneuvers in either rotation or translation are neither required nor

feasible. The driving consideration for the RCS system capability is

related to the man-in-the-loop maneuvers performed during rendezvous, docking,

and payload transfer operations. The times associated with these maneuvers

must be in a range in which man can provide effective control.

On this basis, NSI has established the admittedly arbitrary condition

that maneuvers must be performed within a time period of 5 to 10 minutes.

NSI experience with man-in-the-loop simulations indicates that this time

frame is within the range of effective control.

For the SEPS spacecraft, almost all maneuvers are likely to be

limited by the available force or torque. Thus, maneuvers will tend to

be time optimal. For such a maneuver, the time and energy required can

be evaluated as follows.

Consider a body moving with constant acceleration. The governing

equations are

v= at

1 2
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The time required to accelerate from rest to a point

x -

is given by

t=Va V

Since the same time is required to decelerate to rest at x = X, the total

maneuver time is given by

T = 2V

A similar relationship holds for rotation:

T = 2

Although few SEPS maneuvers will be of such a simple form with constant

acceleration in one parameter, the time constants obtained using the above

equations provide a good measure of control effectiveness.

The Rockwell RCS design used thrusters with 0.136 kg thrust (decaying

to 0.068 kg after blowdown). This gives thrusts and torques shown in Table

7-1.

Table 7-1. ROCKWELL'S RCS SYSTEM CAPABILITY

Fx = 0.272 kg

F = 0.136 kg (effective)

Fz = 0.068 kg (effective)

Lx = 0.622 kg m

L = 0.622 kg m

Lz = 0.415 kg m
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Using a translational distance, Z, of 100 feet and a rotation angle, 8,

of 180 degrees (typical values), the corresponding time constants for a loaded

SEPS with wings retracted are given in Table 7-2.

Table 7-2. TIME CONSTANTS USING ROCKWELL'S RCS SYSTEM

MANEUVER T, MINUTES

x translation 8.6

y translation 12.1

z translation 17.1

x rotation 2.8

y rotation 6.3

z rotation 7.8

The capabilities indicated by this table are marginal. Since the thrusters

are quite small, little weight penalty is incurred by enlarging them, and the

biconvex mast solar array structure has enough rigidity to tolerate larger

thrusters. Therefore, in the NSI design the RCS thrusters have been increased

to 2.3 kg units. This reduces the longest time constant to less than 3 minutes..

The RCS propellant requirements have been estimated against the baseline

mission model. The results are shown in Table 7-3. Note that the largest entry

in this table (except for contingency fuel) is that for rendezvous translational

motion. This is also the least accurately known quantity, so a large contingency

has been included.

Table 7-3. RCS PROPELLANT BUDGET

PURPOSE FUEL REQUIRED (kg)

Cruise Attitude Control 13.6

Rendezvous (for 6 rendezvous)
Velocity matching 27.2
Translational maneuvering 4.1
Rotational maneuvering 0.68

100% Contingency 45.4

TOTAL 90.9
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7.4 DESIGN DRIVING OPERATIONS

The SEPS operations involving the use of GN&C can be separated into

two parts -- cruise operation and rendezvous. The factors in each of these

parts which affect the GN&C system are discussed in the next two subsections.

7.4.1 Cruise Operations

During SEPS cruise periods, only two factors generate requirements upon

the SEPS attitude control system. These are the perturbation due to gravity-

gradient torque, and the requirement for attitude changes imposed by the

thrust vector and solar panel steering constraints.

The gravity-gradient torque acting on SEPS was evaluated and found not

to be a significant factor. The analysis is given in subsection 7.4.1.1

The requirements due to steering constraints are significant. They

involve the phenomenon of so-called "gimbal lock," which is a consequence of

the single rotational degree of freedom between the solar panels and the

spacecraft. A detailed analysis of this problem is given in Appendix A.

The effect of the gimbal lock phenomenon depends more upon the opera-

tional philosophy than upon hardware considerations. Basically, if the system

is required to point the solar panels directly at the sun, it can easily be

shown that attitude control can be lost regardless of the torque capability

of the system. If, on the other hand, a suboptimal steering program, which

permits angular errors in solar panel pointing, is adopted, control can always

be maintained with a certain amount of degradation in SEPS performance. The

extent of this degradation can be estimated rather easily, and does not appear

to be serious. However, as discussed in the subsection on low earth orbits

(subsection 7.5), a definitive determination calls for the development of new

analysis software, and is outside the scope of this effort.

For attitude maneuvering during cruise, it is desirable to use the control

torque available by gimballing the main engines, rather than using RCS propel-

lant. The control authority of these engines is computed in subsection 7.4.1.2.
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It appears from the results that RCS propellant will not be required except

at rendezvous, and during shadow periods.

7.4.1.1 Gravity-Gradient Torque. The gravity-gradient torque on a rigid body

is given by

L = 3 n2 p x p

where p is a unit vector directed to the earth, I is the inertia tensor, and

n the mean orbital motion. If I is diagonal, that is

A 0 0

0 B 0

0 0 C
then

Lx = 3 n (C - B)py pz

Ly = 3 n 2(A - C)p z pX

L z = 3 n 2(B - A)p x py

The maximum values of these torques occur at angles of 45 degrees, for which,

for example,

Py Pz = (.707)(.707) = .5

Thus L = kIC - BIx
max

L = klA - CI
Ymax

Lz = klB - AI
max

3 2
where k = - n .

2

For near earth orbits (period = 90 minutes)

n = 1.164 x 10- 3 rad/sec,

-6 -2
so k = 2.03 x 10 sec
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The mass properties of SEPS were estimated using the NSI digital com-

puter program CIPP (Composite Inertia Properties Program). This program

permits the computation of the inertia properties of a complex body by

describing it as a collection of simple geometric shapes. The SEPS was approx-

imated by the simplified form shown on Figure 7-2. The parameters for each

portion of this shape are shown in Table 7-4.

z

Figure 7-2. SHAPE USED FOR INERTIA ANALYSIS

Table 7-4. COMPONENTS OF SIMPLIFIED SHAPE

BODY WEIGHT, kg X LENGTH, cm Y WIDTH, cm Z HEIGHT, cm COMPONENT

1 666 188 61 305 MAIN BODY

2 181 53 146 146 ENGINES

3 189 427 2662 0 LEFT WING

4 189 427 2662 0 RIGHT WING

5 4535 914 457 457 PAYLOAD
(Cylindrical
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The inertia properties were also computed for the case in which a payload

was attached. A heavy cylindrical payload was assumed as shown on Figure 7-3.

The mass of the mercury propellant was ignored in computing the inertia prop-

erties, since this mass will be located near the composite center of gravity

and contributes little to the moments of inertia. The resulting inertia

properties are shown in Table 7-5.

4.6 M

Figure 7-3. REFERENCE PAYLOAD

For the empty and loaded SEPS, the resulting torques are found to be

L = 0.0229 kg m

max

L = 9.67 x 10- 5 kg m empty
Ymax

max

L = 0.0229 kg m
max

L = 0.0091 kg m loaded
max

L z  = 0.011 kg m
max

The most troublesome torque is that about the x-axis, which is also the

axis for which control authority is smallest. However, all these-torques,

including the roll torque, are within the capability of the gimballed main

engines.
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Table 7-5. INERTIA PROPERTIES

NO PAYLOAD, WINGS RETRACTED

220.5 0 0 -. 17

0 158.0 0 CG 0

0 0 266.7

w = 1,224 kg

NO PAYLOAD, WINGS FULLY EXTENDED

11,421 0 0 .177
1 = 0 158.0 0 R

0 0 11,467 0

w = 1,224 kg

10,000 LB PAYLOAD, WINGS RETRACTED

1,432 0 0 4.3
I = 0 7,187 0 -CG 0

0 0 7,296.5 0

w = 5,760 kg

10,000 LB PAYLOAD, WINGS FULLY EXTENDED

12,632 0 0 4.3

0 7,188 0 CG 0
0 0 18,497 0

w = 5,760 kg,

INERTIA IN KG-M-SEC2

DISTANCE IN M
MASS IN KG
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If the SEPS is to be restricted to operations above the Van Allen belt

(12,964 km), then k, and consequently the torques, are reduced by

a factor of 25, and are no longer a significant factor.

7.4.1.2 Gimballed Main Engines. SEPS has nine ion engines with a thrust per

engine of 0.0139 kg. With all nine engines operating at full power, this

gives a total thrust of 0.125 kg. The ion thrusters are nominally mounted

on a 3 by 3 matrix array, on 69 cm centers. They are gimballed in two axes

with a maximum deflection of 28 degrees. Roll torque requires a couple to

be generated between pairs of thrusters. The two thruster locations are

defined to be Type A (corner) and Type B (side) locations, as shown on

Figure 7-4.

Figure 7-4. THRUSTER GEOMETRY

For the locations and gimbal angles stated above, the torque available

from a pair of Type B thrusters is

LB = 0.897 kg m.

The torque from a pair of Type A thrusters is obtained when the gimbal

angles generate a vector 45 degrees from the x-y plane. If one writes

T = T sin 01 cos 82

T = T sin 82
z715
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and requires these to be equal, one obtains

sin 81 = tan 82

For 81 = 28 degrees, this gives 82 = 25.1 degrees, and

T = T = .425 T
y z

The torque is then

-2
L = 1.146 x 10- 2 kg m.

The roll torque available from all eight thrusters is

Lx = 0.0409 kg m.

The pitch and yaw torques available depend upon the moment arm distance

between the engine gimbal plane and the composite center of gravity. This

distance has been found to be

S1.29 m (empty)

5.77 m (loaded)

The resulting pitch and yaw torques are, then

0.076 kg m (empty)

L = L =
y z 0.340 kg m (loaded)

The angular accelerations available using the gimballed main engines are shown

in Table 7-6.

Table 7-6. ANGULAR ACCELERATIONS USING MAIN ENGINES

EMPTY LOADED

roll (x) 3.593 x 10-6 sec-2  3.248 x 10-6 sec-2

pitch (y) 4.834 x 10-4  4.744 x 10-5

yaw (z) 6.661 x 10-6  1.844 x 10-5
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7.4.2 Rendezvous Operations

To evaluate the needs of the NG&C system during rendezvous, an analysis

of the rendezvous maneuver was performed. This analysis is described in sub-

section 7.4.3. It does not appear that rendezvous imposes severe requirements

upon the attitude control system, and it can be performed almost to contact

using the main engines. However, operational constraints such as antenna

steering may require the RCS system to be used near the target, and an

allotment of RCS propellant is provided for this purpose.

7.4.3 Rendezvous Maneuvering

At the termination of a rendezvous trajectory, a terminal maneuver must

be executed to match velocity with the target satellite. To avoid the

unnecessary use of RCS propellant, it is desirable that the SEPS main engines

be used for as large a portion as possible of this terminal maneuver. Factors

which may limit the use of the main engines are:

* Requirement for rapid thrust vector direction changes near rendezvous

* Effect of ion engine plume impingement upon payload.

To investigate these considerations, it is necessary to consider the low-

thrust rendezvous maneuver. The study of the maneuver is more difficult

than in the case of chemical propulsion.

For a vehicle with chemical propulsion, the terminal maneuver is essen-

tially impulsive, and simplifying approximations can be made. For a low-

thrust vehicle, the terminal maneuver can take place over a period of many

orbits, and the orbital dynamics and attitude maneuvering must be taken into

account. Theoretically, the optimum terminal maneuver is given automatic-

ally in a natural way by use of a low-thrust optimization program such as

MOLTOP with appropriate end conditions and constraints. In practice, however,

a complete, three-dimensional optimization of the total trajectory is an

inefficient way to study the terminal maneuver. Aside from the expense of a

number of time-consuming runs, a terminal maneuver generally has little effect

on the total fuel used in the mission, and thus will be only loosely optimized.

Also, the three-dimensional optimization tends to call for rather extreme
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out-of-plane thrusts at termination, which tend to obscure the effects sought.

To avoid these problems, a method of studying the terminal maneuver alone is

needed.

Several studies have been conducted of suboptimal terminal maneuvers for

low-thrust vehicles. Typically, these studies involve the assumption of an

a priori pitch program, with constants determined by iteration in order to

satisfy the boundary conditions. An NSI study* has treated the terminal ren-

dezvous maneuver. In this study, it was assumed that truly optimum steering

would not be used, but instead some empirical steering law. A linear pitch

profile was used for the study. Also, an initially circular orbit was assumed.

Because of these assumptions, the results are not as generally applicable as

might be desired; however, some useful results were obtained. Figure 7-5 shows

one trajectory from the study, a burn-coast-burn rendezvous. Note that since

the coast period is 9.6 hours, this is essentially the low-thrust analog to a

Hohmann transfer. The need for a coast period is open to question. It proved

to be more nearly optimum in the study cited. However, this may be a conse-

quence of the linear pitch profile assumed.

During the SEPS effort, an alternate approach, suitable for the study

of continuous thrusting, was developed by NSI, and is outlined in Appendix B.

In this technique, the radial position time history is specified a priori.

This is used to find the pitch program for a continuous thrusting which yields

the commanded radial motion.

Example approach trajectories obtained through this method corresponding

to the exponential function described in Appendix B, are shown on Figure 7-6.

Of this family, the most attractive trajectory appears to be that obtained when

X has its maximum value of n/2. This particular case, which is detailed on

Greenleaf, W. G., "Solar Electric Propulsion Stage (SEPS) Geosynchronous
Rendezvous Geometry, Propulsion, and Guidance Compatibility Analysis,"
NSI Memo M-240-1215, May 1973.
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Figure 7-7, is characterized by a final thrust vector 
which is directly verti-

cally down. At a large distance from the target, the vehicle angle 
of attack

(pitch angle from the horizontal) for the X = n/2 
case is zero, and the SEPS is

operating in an orbit-raising mode. Beginning about ten orbits from rendezvous,

the angle of attack begins to increase, reaching a maximum of about 62 degrees

at 6 hours before rendezvous. This behavior represents something of a surprise.

It may be a consequence of the choice of the exponential function used. 
How-

ever, it is felt at this time that this behavior is more universal 
than that,

and is required in continuous-thrusting cases to avoid inducing eccentricity

into the final orbit. However, note that it gives favorable geometry since

the angle between the thrust vector and the line of sight to the target 
remains

relatively constant over a large portion of the approach. In the last few

hours of the maneuver, the SEPS begins to pitch down again, and has an angle

of attack of -90 degrees at rendezvous. This pitch motion presents no diffi-

culty to the attitude control system, but does complicate 
the laser radar

tracking, ground communications, and so forth. In practice, it is probable

that the ion engines will be shut down at some point, and final approach 
will

be accomplished using the RCS thrusters. If these thrusters are used exclu-

sively within 5 nautical miles (5 hours) of the target, they must supply 
about

2.286 m/sec AV capability, which in turn requires about 9.1 kg of RCS fuel

for the loaded SEPS.

x, (n. mi)

1 2 3 4 5 6 7 8

1 HR

2 HR 1

3HR 2

3

4 HR

--

5 HR

> 6

6 HR INTERNATIONAL NAUTICAL MILES 1.852 km

-- 7

Fiyure 7-7. SEPS RELATIVE MOTION APPROACH SHOWING FINAL FEW HOURS
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At the other extreme, the SEPS main engines could be used as long as

possible, say to within one hour (457.2 meters) of rendezvous. To accomplish

this, the ladar would have to be gimballed. This is done in the NSI design

by mounting the ladar on one of the TV scan platforms. In this case, RCS

requirements can be reduced to <0.3 m/sec and <0.9 kg fuel. In practice,

the approach used will fall between these two extremes. NSI is allotting

4.5 kg of RCS fuel for each rendezvous.

The technique developed by NSI for this study appears to be quite useful

since it permits the rapid generation of large families of candidate approach

trajectories by defining functions of a single variable. Further study is

warranted to extend the range of useful functions.

7.5 LOW EARTH ORBIT OPERATIONS

NSI has performed preliminary investigations as to the feasibility of

SEPS operation in low earth orbit (LEO). Certain problems occur when operating

in this mode. One of these is the rather large angular accelerations called

for to meet thrust vector and solar panel pointing constraints. An analysis

was performed of this problem, and it is detailed in Appendix A. It was

found that an acceleration factor can be defined which is a function of

the thrust vector slew rate i and the minimum thrust vector/solar vector

angle 6. The parameter A is determined by the steering control system, and

can be very large (in fact, infinite). However, in general it will be pro-

portional to the orbital mean motion. For the case in which 5 = n (an

important special case), the values of max are shown as functions of orbit

altitude on Figure 7-8. Values of the acceleration factor (which is related

to the misalignment angle) from 1.0 through 5.0 are shown. The dashed line

represents the roll acceleration available to .SEPS using gimballed main

engines. One method to limit the angular acceleration to an acceptable value

is to deliberately steer for a misalignment angle. If this is done, the

required angular error can be directly related to altitude by a cross-plot

of Figure 7-8. The result is shown on Figure 4-11. As can be seen, low

earth orbit (300 to 1000 nautical miles) operation is feasible for the case

A = n with a misalignment of 26 degrees, corresponding to a 10 percent power
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loss. Rockwell has also studied this problem and arrived at a similar con-

clusion. Their "softened" steering and "alternate" steering methods, when

applied together, will reduce the misalignment angles to roughly half those

shown on Figure 7-9.

It should be noted that maneuvers faster than those at the orbital rate

are required. For plane change maneuvers, for example, attitude changes that

are essentially instantaneous are called for by the trajectory optimizer.

In practice, however, the maneuver time need only be short compared to an

orbital period. More will be said about this later.

Another problem occurring in LEO is that of shadowing. Rockwell has

correctly pointed out that if shadowing is taken into account, the pitch

angle maneuvers called for are much more violent than those of a continuous

orbit-raising process (in which the assumption \ = n holds). This is

especially true if the start-up time after shadow emergence is long. The

Rockwell results indicate a serious degradation in fuel expenditure (by a

factor of three) and mission time (by a factor of five). Some of the conclu-

sions, however, may be artifacts of the method used.

For example, consider the shadowed trajectory shown on Figure 7-10. It

is well known that the optimum thrust profile for an orbit-raising operation

is to thrust normal to the radius vector as shown by the four arrows. If

this same steering is done in an orbit that is shadowed, the thrust loss in

the shadowed segment (segment D on Figure 7-10) causes an unbalanced condition.

The orbit eccentricity increases, with the apogee being located on the shadowed

side. The optimum place for application of thrust to raise the perigee is, of

course, at apogee, but this is not possible.

There are two factors which reduce the severity of the problem. First,

if the orbit is inclined to the equator (as most of the LEO orbits are),

precession will cause the apogee to move out of the shadow, thus alleviating

the problem. More directly, the orbit-raising process can be rebalanced by

shutting down the engines in segment B. The result is a series of thrusts
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Figure 7-10. THE EFFECTS OF SHADOWING DURING PITCH ANGLE MANEUVERS

applied in segments A and C, and yielding a set of modified Hohmann transfers.

This result did not appear in the Rockwell International study because of the

low-thrust optimization program used. MOLTOP cannot generate the coasting

subarcs. Examination of the results, however, will show that it did the

next best thing: it called for 180-degree maneuvers of the thrust vector in

segment B, thus effectively averaging the thrust in that segment to zero.

Of course, the use of coast segments in the mission cannot and will not

improve the mission time over the Rockwell International results (although it

will not increase it appreciably). However, it should greatly reduce the fuel

expended to nearly the level of the unshadowed cases.

The high angular accelerations which continue to appear in studies of SEPS

in LEO are similar artifacts. In a typical study, a 3-D trajectory optimization
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program such as MOLTOP is used to generate optimum trajectories. The thrust

vector time history is then used to generate an attitude history. The high

accelerations which arise are really a consequence of the fact that the thrust

vector was constrained to lie exactly along the optimum direction, and the

solar panels to point exactly at the sun. Rockwell International has already

correctly pointed out that the required accelerations can be appreciably

reduced by using "softened" steering. More correctly, the limited degree of

attitude control authority available should be treated as a constraint in the

optimization. The fact that the 3-D solution calls for unattainable accelera-

tions is merely a statement that the constrained optimum is different from

the unconstrained one.

The attitude control and optimum thrust factors also interact in that

solar panel pointing errors affect the available power, and hence thrust level.

This should not, however, be treated as a hard constraint on solar panel

misalignment. (There may be other constraints on error, such as solar heating

of the power processors. However, these can be modified if necessary by

design changes, such as the use of heat pipes.) Rather, one should include

the effects of misalignment upon engine thrust. Optimization would then

automatically tend to keep the misalignment small.

The conclusion of NSI is, then, that while there are no compelling

economic reasons that can be identified for the use of SEPS in LEO, it

cannot be concluded from the studies to date that such an operation is

infeasible. In order to establish the feasibility with confidence, a new

trajectory optimization program is required. This program should be a 6-D

attitude/translation optimization in which the engine gimballing for attitude

control, effect of solar panel misalignment upon thrust,.and oblateness

effects are accounted for. The development and use of such a program is

recommended only if a clear-cut advantage to SEPS over Tug in LEO can be

identified.
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7.6 LEVEL OF AUTONOMY

One factor of interest in several areas of spacecraft operations is

the level of autonomy to be used, that is, the trade-offs between manual,

ground-based control such as was used with early unmanned spacecraft, and

automated navigation and control of the various functions. NSI has investi-

gated these trade-offs for SEPS operations with respect to their impact upon

SEPS hardware requirements. After considering some of these trade-offs, it

has become the opinion of NSI that the difference between the approaches are

so minimal that such trade-offs should not be attempted at this time, and

in some cases, optimums may not even exist. As an example, consider the case

of operation of the manipulator arms. Although completely ground-based

(man-in-the-loop control may be baselined there will be some operations

requiring onboard control. For example, the operator will likely command

composite operations such as end-effect commands rather than individual joint

motions. It will be necessary, then, that joint feedback be provided to the

SEPS onboard computer, and used to transform the operator commands into

torque motor commands. To protect the spacecraft in the event of operator

errors or telemetry malfunctions, it also would be desirable for SEPS to have

a capability for avoiding interference between the arms and other parts of

the SEPS or payload.

If, on the other hand, SEPS controls the arms autonomously, we would

still insist on the ability to monitor the operation from the ground and

override if necessary. For either extreme of operation, then,essentially

the same hardware and software would be needed, namely:

* TV link with ground

* Arm control from ground

* Joint feedback to onboard computer

* Autonomous interference avoidance

* Onboard geometric transformations.

Similar considerations apply for other trade-offs between autonomous and

man-in-the-loop procedures. It is rare that such trade-offs affect hardware

requirements except with respect to onboard computer capacity. With regard to
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the onboard computer, advances in computer technology are proceeding at such

a rapid rate that the task of estimating future capability is precarious.

In recent years, the technology of digital computer hardware production

has made great advances, and digital computers are now commercially available

with price, size, reliability, and performance figures which were not dreamed

of a few years ago. In the past year alone, the following advances have been

made:

* Several manufacturers (for example, Intel, Texas Instruments,
Motorola, General Automation) have marketed 8-bit central processor
units (CPU's) on a single integrated circuit chip

* 16K-bit read only memory (ROM) chips are now commercially available

* 4K-bit random access memory (RAM) chips are now available, with 16K
expected within the year

* Fairchild has announced charged-coupled image devices (100xl00 array)
for TV service. Higher resolutions are expected shortly

* Charged-coupled "bucket brigade" shift registers for analog delay are
commercially available. Modified versions for digital use (an easier
task) are under development

* Experimental magnetic bubble memories are now operating with very
high storage densities, high reliability, and low power.

* Several companies are now competing to be the first to announce
nonvolatile, high-speed semiconductor memories.

Because of these recent developments and expected advances in the near

future, it is feasible for the first time to consider an onboard control com-

puter of true large-scale capacity. Estimates of weight, cost, and power

requirements are difficult because of the rapid progress. being made. However,

even the most pessimistic estimates result in values that are essentially

negligible compared to other SEPS subsystems.

Certain studies have tended to indicate that the reliability of the on-

board computer may be marginal if a largememory is used. NSI cannot agree

with these results. An increase in the amount of hardware permits an increase

in the redundancy, error checking, and self-test and repair (STAR) capabilities
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which can be added, and thus increase, rather than decrease, reliability. With

respect to cost, it should be pointed out that the overwhelming factor in com-

puter-related costs is that of software development, which for a small computer

is more difficult, and hence more costly, than for a large one.

The conclusion reached by NSI is that the level of autonomy used impacts

only marginally the hardware requirements for SEPS, except in the area of on-

board computer capacity. Since the choice of this capacity itself has only

a marginal impact upon the SEPS cost, weight, and reliability, it is NSI's

recommendation that sufficient hardware, including computer capability, be

baselined to permit a high level of autonomy. The final trade-off between

autonomy levels can then be deferred to a point at which more definitive data

are available.
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Section VIII

COST ANALYSIS

8.1 BACKGROUND

The credibility of these cost estimates depends strongly upon the program

reviewer's understanding of the system. As the reviewer compares these costs

against his experience with past chemical stage programs and past satellite

programs he should continually consider those physical and operational charac-

teristics that allow SEPS to be delivered, produced, and operated with fewer

people and a smaller range of disciplines than was possible for many reference

programs. SEPS high Isp, 3,000 to 5,000 second range, results in the fact

that its performance is relatively insensitive to increased mass. Reliable

flight proven avionics from other space programs can be used without the

necessity of additional development cost to reduce component weight or power

consumption. New component development can be provided generous mass budgets

that will allow reductions of cost in achieving program reliability, life, and

performance goals.

SEPS is relatively simple. It is nearly all electrical. It has compact

dimensions for transport and storage. Small buildings and small checkout

equipment will support its few launch preparation and refurbishment activities.

The largest cost in SEPS operations is for maintaining the range of disciplines

for mission planning and flight control personnel. These personnel must know

SEPS configuration, functions, subsystems, and components in detail. The

personnel that support.-the launch preparation functions, the one or two refur-

bishments, and the sustaining engineering must know the system intimately.

For the first 3 years of the program only six earth orbital sorties and two

planetary missions (four SEPS with back-to-back launches) are flown. By the

time flight frequency picks up to four sorties a year, the team will have had

time to wring out all the bugs in their mission planning and operations pro-

grams and to establish streamlined manpower conserving computer aided proce-

dures. The system operational profile (Figure 1-8) shows that in 11 years

there are only eight planetary and four earth orbital launches to accomplish
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the reference mission model. Only one SEPS refurbishment for relaunch is

required. Two are costed on the basis that retention of two program spares is

desirable. There are only 30 earth orbital sorties by SEPS over the 11-year

period. Recall the SEPS autonomous cruise and autonomous terminal approach

phase of the rendezvous (when desired) capability so that a sortie, typically

90 days or less total time, has only four periods of peak activity where the

mission planning and flight control crews are fully utilized. These periods

of peak activity are associated with the following functions:

1. Detail planning of the next sortie in conjunction with the payload

users and Shuttle flight planners

2. Systematic retrieval of the payloads to be returned to earth by Tug

and Orbiter, and initiation of the cruise phase down to the Tug

rendezvous orbit

3. Rendezvous with Tug, delivery of down payloads, acceptance of up

payloads, and initiation of the ascent cruise phase to deploy up

payloads at their mission conditions

4. Deployment of payloads at their mission station and performance of

servicing functions for any other payloads requiring that function.

Readers interested and experienced in mission planning and flight control

recognize those four functions in past space experience as time consuming and

demanding of a large investment in man-hours. For this SEPS group, however,

the longest involvement of any intense activity is with the payload sponsors

in the detail mission planning. Other functions require 2 to 3 days' full

utilization of a 16-man team around some key flight operation. A small invest-

ment in time and people (in spite of past experience) can accomplish in the

SEPS program the four functions described previously, because:

* 13.2 million dollars is allocated for initial software. This breaks

down to checkout and onboard ($4.5 million) and flight control center

($8.7 million) to automate the mission planning and flight control

* The group does only the SEPS specific detail planning. Two other

principal groups provide controlling event sequences and transporta-

tion system function timelines to which SEPS must perform. The

advance planning input comes from the Shuttle/STS Utilization and

Master Scheduling Center. The detailed specific mission timeline

event sequence for activities influencing Shuttle is established by

the Shuttle Operations Center.
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The total operations plus program support concept was selected to minimize

personnel cost. Flight control peak activity with its rare but sometimes

necessary requirement for dual shifts and backup of certain critical personnel

sets the minimum number of personnel in the team. Flight control is required

only about 5 percent of the time over an 11-year period. The operating concept

uses a single facility for all program functions. The personnel will be cross

trained to be competent in several program functions. This approach allows

flight operations personnel to assist with engineering or have primary respon-

sibility for accomplishing launch preparation, mission planning, refurbishment

and other sustaining functions during SEPS idle periods onorbit and during auton-

omous flight periods. The analysis indicates that 45 people organized as shown

in Figure 8-1 can accomplish all SEPS functions during the operational phase.

If the SEPS flight unit is not autonomous during cruise periods, more people

will be required. If the work is decentralized and responsibilities divided,

more people would be required. In either case, the recurring costs would be

higher.

PROGRAM MANAGER
PROGRAM CHIEF ENGINEER
(2) Total Group 45

LAUNCH SITE ADMINISTRATIVE SUPPORT
DETACHED STAFF(3) STAFF (3)

VEHICLE SYSTEMS ENGINEER FLIGHT OPERATIONS DIRECTOR FLIGHT CONTROL
(1) (Group Total 15) (1) (Group Total 12) FACILITY DIRECTOR

(1) (Group Total 12)

SUSTAINING ENGINEERING AND MAINTENANCE MISSION PLANNING AND SIMULATION DATA SYSTEM MANAGEMENT
DIRECTION FOR SEPS AND ASSOCIATED GSE

REAL TIME MISSION SUPPORT COMPUTER OPERATIONS MANAGEMENT
FLIGHT OPERATIONS CONTROL OF SEPS (PRINCIPALLY COORDINATION OF
SUBSYSTEMS NEW SOFTWARE DEVELOPMENT AND PRIORITIES AND SCHEDULE WITH A

MAINTENANCE NONDEDICATED COMPUTER COMPLEX)
SUSTAINING ENGINEERING AND MAINTENANCE
DIRECTION FOR CONTROL CENTER CONSOLES DATA TRANSMISSION LINE MANAGEMENT

SOFTWARE DEFINITION/GENERATION FOR G CONTROL CENTER MAINTENANCE
CHECKOUT, MONITORING, AND OPERATION OF
SEPS SUBSYSTEMS FLIGHT DYNAMICS ENGINEER (6)

LAUNCH PREPARATION AND LAUNCH SUPPORT SOFTWARE MANAGER (51

FLIGHT SUPPORT DIRECTOR (2)

PROPULSION AND MECHANICAL SYSTEMS DATA SYSTEM MANAGER 16)

ENGR (4) CONTROL CENTER MAINTENANCE (3)
AVIONICS SYSTEMS ENGINEER (4)

PAYLOAD TRANSPORT/SERVICING SYSTEMS 1 ENTIRE GROUP SUPPORTS A RENDEZVOUS AND
ENGR (5)1 PAYLOAD TRANSFER OPERATION. FCC
(THESE MEN ARE ALSO THE SEPS PILOTS STAFFING DURING THIS PERIOD IS 16.
FOR RENDEZVOUS AND MANIPULATION
OPERATIONSI

Figure 8-1. SEPS PROGRAM SUPPORT ORGANIZATION
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Reference to other sections of this volume and to Volume III, Design

Reference Mission Description and Program Support Requirements, will provide 
a

fuller understanding of a complete sortie and mission cycle for SEPS.

SEPS transportation due to its small packaged size (3m x 3m x 5m) and

light unfueled packaged mass (1814 kg/2 tons) is convenient and inexpensive.

The total supporting equipment and facilities investment is about $9 million,

$5.3 million of which are allocated to computers and peripheral 
equipment.

Computers are underutilized except for the previously defined periods of 
peak

activity and should be utilized by the SEPS Operation Center (SEPSOC) host

institution for its other functions. Computer systems are therefore costed to

the SEPS program start-up; but computer operations personnel, assumed to be

the host centers', are charged only for the estimated times they are required

to support SEPS.

Because of the above factors, NSI believes that SEPSOC facility and equip-

ment cost factors should not control the location of SEPSOC. To accomplish the

program cost savings indicated by the 45-man total program support team, the

SEPSOC must be located at the center that is given the total program respon-

sibility for SEPS.

8.2 PROGRAM COST SUMMARY

The cost estimation assumptions used in the analysis are as follows:

There will be a single SEPS DDT&E and production program managed by one

organization. The basic core vehicle will be capable of accomplishing either

the earth orbital functions or the deep space mission when certain components

and sensors are added. This may, on occasion, result in SEPS implementing

missions with minimum objectives which do not require its full capability in

solar array power or thrust. Extra capability in SEPS is bound to have some

significant benefits to the science package either by allowing expanded

objectives or by cost/reliability savings accruing due to relief of mass

constraints.
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NSI believes it is pennywise and dollar foolish economy to have tailored,

reduced capability vehicles just to save a few hardware production dollars on

a specific production vehicle since many of the deep space mission science

packages will be ill defined when SEPS is produced to fly that mission and the

extra capability of a standard SEPS core vehicle could be put to desirable uses.

Further, the science packages to be flown will depend upon data from missions

that are not available until after production is complete. It is very

expensive to retain production and sustaining engineering on standby to produce

mission special planetary SEPS. Therefore, the single DDT&E program will phase

into production at the most economical rate for the total inventory. Each

SEPS, after production, will undergo a rigorous flight readiness check as a part

of the final acceptance testing. Then it will be stored in a hermetically

sealed, inert gas filled container with its status check and power supply

hard lines used in ascent flight carried through the container walls to a test

umbilical. As each SEPS is completed, accepted, and installed in its storage

container it goes to the launch site for immediate launch or to the SEPSOC for

inventory storage.

When production of inventory and refurbishment spares are complete, the

DDT&E/production contract is terminated. There is no sustaining engineering

support team at any contractor or subsystem supplier's plant included in

these cost estimates after production is complete. This does not preclude NASA

from electing to have SEPSOC operated by a contractor, and the DDT&E contractor

may be the successful bidder for the SEPSOC support.

It is technically feasible that the 45-man program support team at the

SEPSOC make any modifications or system changes found later in the program to

be deisrable.

Other assumptions are:

* Production is continuous for 11 vehicles. The first vehicle is

delivered 30 months after authority to proceed (ATP).

* All $ are 1974 $.

* There are four planetary missions, each flown with a backup spacecraft

requiring a total of eight planetary SEPS. Only two EO SEPS are

required. One production spare is planned, and the integrated system
test article is refurbished at the end of production to provide a second

spare.
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* Two refurbishments are included in the cost estimates. This extends
the SEPS operating inventory adequacy beyond the 1991 operational
time ground rules for this cost effectiveness study to 1997 if we
assume there were no flight failures that caused a planetary mission
repeat.

* The center given responsibility for the science package and mission
operation will assume flight control of SEPS and the science package at
some time after the cruise mode is established for the initial
planetary trajectory. Only periodic advice or consultation from SEPS

vehicle systems specialists will be provided on request of the planetary
control groups after the cruise mode is established.

NSI's SEPS concept is one basic system, referred to in Section VIII as the

"Core" SEPS plus equipment peculiar to planetary and earth orbital (EO) missions.

In addition to the EO equipment, additional costs for the payload handling and

servicing system (manipulator arm system and biconvex mast) are shown separately

as "EO functions".

Example Using First Unit Cost Data:

"Core" Vehicle Planetary
+ Peculiar = Planetary SEeS $17.5M

$16.75M $0.75M

"Core" Vehicle EO Peculiar EO Functions
+ + = EO SEPS $18.5M

$16.75M $0.75M $1.0M EO SEPS $18.5M

8.3 COST SUMMARY

Table 8-1 presents the SEPS total program costs including planetary vehicle

core development costs and the launch support operation for eight planetary

vehicles.

8.4 DEVELOPMENT, DESIGN, TEST AND EVALUATION COSTS

The DDT&E cost shown in Table 8-2 was based on a single development program

for the planetary and earth orbital SEPS. A core SEPS with all common systems

would be developed. This basic stage would cost $89.2 million. The planetary

and earth orbital deltas to common systems is included in the base price.
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Table 8-1. SEPS TOTAL PROGRAM COST SUMMARY

STAGE DDT&E 
97.5

EO Functions (Transport Mast & Manipulators) 
(8.3)

Basic Stage

STS GPME DDT&E 
2.5

PL Shell & Diaphragms 
(2.5)

FLIGHT ARTICLE PRODUCTION 
145.9

8 Planetary Vehicles (97.6)

3 EO Stages (391.5

STS GPME 7.2)
Stage Refurbishment and Maintenance

SEPS OPERATIONS CENTER INITIAL COSTS 
17.9

Facility and Equipment 88.
Initial Software Package 0.4)
Initial SEPSOC Spares

SEPS SYSTEMS OPERATIONS 
26.2

Personnel (45 men 11 years) (23.7)

Computer Support 
(0.4)

Flight Article Consumables

TOTAL PROGRAM COSTS 
290.0
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Table 8-2. STAGE DDT&E COSTS a

(All Figures are Dollars in Millions)

TOTAL CORE PLANETARY EO m
DDT&E VEHICLE PECULIAR PECULIAR

STRUCTURES & THERMAL CONTROL $ 4.8 $ 4.8

PROPULSION 9.1 9.1 0

POWER DISTRIBUTION 1.0 1.0

SOLAR ARRAY 7.8 7.8

DATA MANAGEMENT 3.4 3.4

COMMUNICATION 2.2 1.4 $ 0.5 $ 0.3

NAVIGATION & GUIDANCE/ATTITUDE CONTROL 9.2 6.0 2.2 1.0

INTEGRATION & TEST CHECKOUT 6.7 6.7

TEST HARDWARE 21.3 19.8 1.1 0.4

STAGE GSE 5.0 4.0 0.2 0.8

SOFTWARE 4.5 4.5

LOGISTICS 0.5 0.1 0.4

S.E.&I. 6.8 6.8

PROGRAM MANAGEMENT 6.9 6.9

BASIC SEPS 89.2 82.3 4.0 2.9

a FOR EARTH ORBITAL FUNCTIONS OR
(PAYLOAD MAST & MANIPULATOR) 8.3 8.3

TOTAL 97.5

0
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The earth orbital SEPS will have an additional system for payload trans-

port and handling. This system is composed of a payload transport mast and a

manipulator system. Its cost of-$8.3 million is presented in Table 8-3.

Table 8-3. SEPS PAYLOAD AND TRANSFER SERVICING
SUBSYSTEM COST ESTIMATE

DDT&E

PAYLOAD TRANSPORT AND SERVICING SYSTEM1* $ 1.9 mr

POWER DISTRIBUTION 0.1

DATA MANAGEMENT 0.6

COMMUNICATION 0.2

INTEGRATION AND TEST/CHECKOUT 0.9

TEST HARDWARE 1.3

GROUND SUPPORT EQUIPMENT (GSE) 0.8

SOFTWARE 0.8

LOGISTICS 0.9

SE&I 0.7

PROGRAM MANAGEMENT 0.1

TOTAL $ 8.3 M

(new Category) Manipulators/Payload Mast
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The SEPS system recommended by NSI contains general purpose mission

equipment which supports payloads during STS flight operations. The equipment

includes a payload half shell and support diaphragms. The development cost

of $2.5 million is presented in Table 8-4.

Table 8-4. TUG PAYLOAD TRANSPORT SHELL AND DIAPHRAGMS
COST ESTIMATE

(Dollars In Millions)

DDT&E

TRANSPORT SHELL AND DIAPHRAGMS* $ 0.2

TEST HARDWARE 1.2

INTEGRATION AND TEST CHECKOUT 0.3

S.E.&I. 0.8

2.5

*(NEW CATEGORY - COST SHARED WITH TUG)

The following manpower items (not involved directly with component and

subsystem detail design and development) for the various engineering and

nontechnical disciplines are provided for visibility of total DDT&E manpower

requirements.

These manpower costs form the basis for the labor estimates for the DDT&E

program.

(Costs in Millions of Dollars)

DDT&E LABOR

$ $
INTEGRATION AND TEST CHECKOUT $ 6.7 $ 3.4

GSE STAGE 5.0 1.7

SOFTWARE (STAGE/TEST) 4.5 4.5

LOGISTICS 0.5 0.5

S.E.&I. 6.8 6.8

PROGRAM MANAGEMENT 6.9 6.9

TOTAL LABOR $23.8
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Initial production support is also shown to give visibility of the transi-

tion of personnel from DDT&E to production.

It should be noted that as the production pipeline becomes full, the

balance of production support average manpower carrying through in the following

categories is:

INTEGRATION AND TEST CHECKOUT 50

S.E.&I. 80

PROGRAM MANAGEMENT 80

TOTAL 210

Figures 8-2 through 8-6 present a breakout of the manpower by program

month.

8.5 WORK BREAKDOWN STRUCTURE FOR STAGE DDT&E
The cost of the DDT&E phase for the stage is presented by the work

breakdown structure shown on Table 8-5.

8.6 FLIGHT ARTICLE PRODUCTION

The assumptions and conditions are:

* Costs are in 1975 dollars.

* A single configuration core vehicle is produced.

* Production is continuous and includes 11 units. The DDT&E test and
production sustaining engineering vehicle is refurbished at the end
of production to provide a total of 12 vehicles.

* No material handling has been added to the subsystem costs. Particularly
in the aerospace industry, there is a wide divergence in the treatment
of expenses as overhead items or direct contract charges. Items some-
times considered separately as "Material Handling" and many items often
considered "General and Administrative" expense have been included in
the Program Management category.

8.6.1 Production Cost Summary

The 10 flight articles and 2 spares will be produced in a single production

run at the most economical rate. Standard planetary kit items will be

incorporated in eight vehicles and standard EO equipment will be incorporated
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Table 8-5. DESIGN DEVELOPMENT COST SUMMARY
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CONTRACT NO.
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DATE

PAGE OF
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NUMBER WBS IDENTIFICATION LEVEL COST RATING FUNCT.

A-03 Stage 4 89 ?

This element includes item related to the desigi and d.velopment of the SEP stage.

Cost related to this element are non-reoccurring.

Items in this elemen include all elements listed in Tible 8-2 except the A for earth orbital

functions.



Table 8-5. DESIGN DEVELOPMENT COST SUMMARY (Continued)

STUDY TITLE
CONTRACT NO.

COST DATA FORM - A(1)
NON-RECURRING (DDT&E)

DATE

PAGE OF

IDENTIFICATION WBS EXPECT. CONFID. T T SPREAD

NUMBER LEVEL COST RATING FUNCT.

A-03-02 Ion Propulsion 5 9.1

Thruster support s ructure

9 30 CM Hg thruste s
Insulation

Gimbal assemblies

Actuators

Hg storage tank and accessories

Refueling receptac es

Power processors

Switch matrix

Instrumentation

Lab ling

Fittings and iines
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STUDY TITLE
CONTRACT NO.

COST DATA FORM - A(1)
NON-RECURRING (DDT&E)

DATE

PAGE -OF

IDENTIFICATION WBS EXPECT. CONFID. Td Ts SPREAD
NUMBER LEVEL COST RATING FUNCT.

A-03-01 Structural and Thermal 5 4.8
Control

Primary structure

Phased array antenna supports

Tankage support

Solar array inboard wing spars

0o Solar array deploy retract

" Substructures

Scanning plattorm moments

Manipulator moments

SEPS mounting struct re

Insulation blankets

Radiator louvers
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STUDY TITLE
CONTRACT NO.

COST DATA FORM - A(1)
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PAGE OF
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A-03-03 Energy Storage and Power 5 1.0

Distribution

Solar array distribytion panel

Stage power distribrtion panel

2 1000 W DC-DC converters

4 batteries NiCAD

o 2 regulators

2 chargers

Mounting and integra tion

Wiring businesses f r ES&P

System only - Subsy tem wiring businesses are arts o each subsystem
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A-03-04 Solar Array 5 7-.

Solar array wing

Power take off connector

Solar cells

Deployment interface
oo
& Wing deployment and retraction mechanisms

2 sun sensors
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PAGE OF
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A-03-05 Data Management 5 3.4

Remote multiplexer, A/D converters, Signal condition rs

Remote command unit

Central computer (S M-C)

Data storage

co
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PAGE OF
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A-03-06 Communication 5 2.2

Antenna subsystems

R. F. subsystems

Command decoders an( TM

00
Uj
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A-03-07 Attitude Control 5 9.2

Navigation and Guidance

ACS thrusters and accessories

N2H4 supply system

Thermal control

N&G

2 TV cameras (S.P.)

2 Ladars

2 Star trackers

24 Sun sensors

1 IMU

2 TV cameras (on manipulators)

Electronics

2 Horizon sensors

2 ILT
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A-03-08 Integration and Test 5 6.7

Checkout

This element contains the development test, eigineer ng, and inte ration testing

necessary to verify and flight qualify the flight test unit.

This WBS element also includes the sustaining engineering testing associated with

00 correction of any faults discovered in the ea th orb tal test of 3EPS #1 and in-

corporating the changes into the production i em.
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A-03-09 Test Hardware 5 21.3

This element contains the cost of material, fibricat on, reliability and quality

assurance to produce the flight test unit. Tie cost of modifications during the

qualification test period are included.

Test hardware associated with modifications resulting from the EOf and support t

00 production test is included.
t~
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A-03-010 Stage GSE 5 5.0

This element contains the cost of the engineering an( production of 2 sets of

manufacturing acceptance test equipment, one !et wil be used at the SEPSOC

during launch preparation. Major items include:

1. Test control console

2. Computer terminal

3. Air table tc support solar arrays duri g 1g deployment tes

I The cost of handlirg equipment for the launch site i! also included.
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NUMBER LEVEL COST RATING FUNCT.

A-03-11 Software 5 4.5

This element includes the development of the :omputer execution aid operating

system software. The cost of applications so tware to support th qualification

test program is also included. The onboard NIG init al program sets are included.

00

1 _______ ____________ i ___
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A-03-12 Logistics 5 0.5

This element contails the analytical cost of identif ing the Line Replaceable

Units necessary to support the operational phase. It includes the hardwar

cost of repair part for the qualification test program.
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A-03-12 SE&I 5 6.8

This element includes all analytical tasks to define the SEPS system. The efforl

required to integra e related technical functions and interfaces Io optimi e the

system design is in:luded. The element incluces the following delail task s.

a. System/Subsystem defirition and integration

b. System documentation

00 c. Safety analysis

d. Tug/Space shuttle interface definition

e. Payload interface

f. Maintainability Analysis

g. Reliability Analysis

h. Payload interface definition

_ _ __ I



Table 8-5. DESIGN DEVELOPMENT COST SUMMARY (Concluded)

STUDY TITLE
CONTRACT NO.
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A-03-13 Program Management 5 6.9

This element covers program management for the DDT&E phase. It i cludes the fol owing

cost categories.

a. Engineering Administration

b. Business Management

c. Qualification Test Mapagemen"

d. Configuration Management

e. Quality Assurance Mana gement
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in three vehicles. The second spare will not be equipped with either kit in the

production program. At the end of the run, the production contracts will be

terminated. Cost of the hardware is shown in Table 8-6.

Table 8-6. FLIGHT ARTICLE PRODUCTION COST SUMMARY

(Costs shown are dollars in millions)

FIRST IMPROVEMENT AVERAGE TOTAL

UNIT REQ'D CURVE UNIT PRODUCTION
COST QTY. FACTOR (%) COST COST

Core Vehicle 16.75 11 69.4 11.6 127.6

Planetary Peculiar 0.75 8 75.3 0.6 4.8

EO Peculiar 0.75 3 91.4 0.7 2.1

EO Functions 1.00 3 91.4 0.9 2.7

Tug P/L Shell &

Diaphragms 0.80 2 94.9 0.75 1.5

138.7

Stage Refurbishment and Spares for Operational Refurbishment 7.2

GPME (Tug P/L Shell and Diaphragms) 1.5

Planetary SEPS Average Cost

8 Core Vehicles @ 11.6 = 92.8

8 Planetary Peculiar @ 0.6 = 4.8

97.6 t 8 = 12.2 Average Cost

Earth Orbital SEPS Average Cost

3 Core Vehicles @ 11.6 = 34.8

3 EO Peculiar @ 0.7 = 2.1

3 EO Functions @ 0.9 = 2.7

2 Tug P/L & Diaphragms @ 0.75= 1.5

41.1 + 3 = 13.7 Average Cost

A breakout of these costs is presented in Table 8-7. These vehicle pro-

duction costs are based on the estimated first unit costs and curves of per-

centage reduction in unit cost versus number of units produced. The curves are

based on Northrop's experience with a wide range of electromechanical, elec-

tronic, and aircraft production programs.

8-32



Table 8-7. SEPS FIRST UNIT COST

EARTH
PLANETARY ORBITAL m

"CORE" SEPS PECULIAR PECULIAR

Structure & Thermal 1.20

Propulsion 2.00

Power Distribution 0.40

Solar Array 5.80

Data Management 1.00

Communications 0.90 0.30 0.30

Reaction Control System 0.90 0.45

Guidance & Navigation 0.65 0.45

Integration & Test Checkout 1.10

System Engineering 1.40

Program Management 1.40

TOTALS 16.75 0.75 0.75

CORE SEPS 16.75 CORE SEPS 16.75

Planetary Peculiar 0.75 EO Peculiar 0.75

TOTAL Planetary SEPS 17.50 Subtotal 17.50

Add to EO Functions 1.00

TOTAL EO SEPS 18.50

IJ
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8.6.2 Cost Improvement Curve

The recommended improvement curve represents a composite curve based on

NSI cost experience in the areas of labor, material, installation, and test.

The SEPS first unit subsystem costs (NSI recommended first unit costs)

were analyzed for material and labor content. These items along with integra-

tion and test checkout, were projected down the appropriate curve to obtain

the weighted composite improvement curve.

The historical data used to prepare the individual labor, material, in-

stallation, and test checkout curves were gathered from the following Northrop

programs:

* Polaris/Poseidon Missile Test and Readiness Eq. (Electronics)

* C-5 Navigation Systems (Electronics)

* TISEO (Target Identification Selection Evaluation Optics) (Electro-
optical)

* Hawk Missile Loaders/Launchers/Missile Wings/Actuators (Mechanical)

* F5/T38 Aircraft (Airframe)

The above programs all demonstrated similar characteristics as the NSI

recommended improvement curve with variations dependent upon labor and material

mix.

The cost improvement curves are presented on Figures 8-7 through 8-10.

8.7 SEPS OPERATIONS CENTER INITIAL COSTS

Almost all of the SEPS operational phase functions will be accomplished

at a single operations center. This includes launch preparation, flight con-

trol, refurbishment, and mission planning. The single exception is the inte-

gration of SEPS into a payload transport shell. This will occur at the launch

site.

A SEPSOC is required. The basic building will provide space for each

function at a cost of $0.7 million. The flight control equipment includes a

8-34
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computer at $5.3 million, and control consoles and displays at $1.1 million.

Spare parts for the control consoles and displays will cost $0.4 million.

Application software, which will enable a small (45 man) group to accom-

plish all program functions, will cost $8.7 million.

The total SEPSOC costs are $17.9 million. A breakdown is presented in

Table 8-8.

Table.8-8. SEPS OPERATIONS CENTER COSTS

GSE SYSTEMS ENGINEERING $1.7M

EQUIPMENT (COMPUTER 5.3M + CONSOLES
AND DISPLAYS 1.1M) 6.4M

FACILITY 0.7M

SOFTWARE (OPERATIONS) 8.7M

SEPSOC SPARE PARTS 0.4M

$17.9M

The mission model requires the use of earth orbital SEPS in 30 sorties

over an 11-year period. In this same period, 12 launches are required - 8

planetary and 4 earth orbital. In addition, the flight test article and one

earth orbital SEPS must be refurbished.

Under the NSI operations concept, a 45-man organization can accomplish

all functions except computer operations. This organization will cost $23.7

million over 11 years. Table 8-9 shows the portions allocated to each function.

Table 8-9. SEPS PERSONNEL ALLOCATION

FUNCTION % OF TOTAL PLANETARY EARTH ORBITAL

LAUNCH PREPARATION 12.0 8.0 % 4.0 %

PROGRAM MANAGEMENT 10.0 2.5 % 7.5 %

REFURBISHMENT 12.0 - 12.0 %

FLIGHT OPERATIONS 8.0 - 8.0 %

PLANNING 58.0 14.5 % 43.5 %
100.0 % 25.0 % 75.0 %

PERSONNEL COST $ 23,700,000 $ 5.9M $ 17.8M

8-39
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The SEPS program will purchase the computer for use by the host NASA

center. SEPS operations will then purchase $2.1 million in computer operations

support from the host center.

The flight units will consume $0.4 million for mercury and hydrazine in

the accomplishment of flight missions.

A breakdown of the $26.2 million operations cost is presented in Table

8-10.

Table 8-10. SYSTEM OPERATIONS COST

PERSONNEL

45 MAN OPERATIONS
ORGANIZATION FOR 11 YEARS
AT $48K per man year 23.7 Million

COMPUTER OPERATIONS
(11 YEARS) 2.1 Million

FLIGHT ARTICLE CONSUMABLES
(MERCURY 5400 POUNDS + 750 POUNDS N2H4 ) 0.4 Million

$26.2 Million

8.8 COST EFFECTIVENESS OF EARTH ORBITAL SEPS

A planetary only SEPS program is estimated to cost $232 million. The

recommended planetary plus earth orbital SEPS program will cost an additional

$58 million. Its use will result in a gross transportation cost savings of

$184 million. This is the result of reducing the number of Shuttle flights by

15 and saving $18 million in STS hardware costs.

The addition of the earth orbital SEPS is, therefore, cost effective

(Table 8-11), with a net savings of $126 million. This $126 million represents

a 217 percent return on the investment in an earth orbital program.

8-40
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Table 8-11. COST EFFECTIVENESS SUMMARY
(DOLLARS IN MILLIONS)

NET COST OF EO SEPS 58

COST PER SORTIE (29 SORTIES) 2

NET SAVINGS OF STS WITH EO SEPS VERSUS STS WITH
PLANETARY SEPS ONLY 126

RETURN ON NET COST 217%

Table 8-12 compares the total STS costs with and without the earth

orbital SEPS. Table 8-13 depicts the allocation of SEPS program costs between

the planetary and earth orbital SEPS. The earth orbital deltas are for addi-

tional hardware, software, and personnel to accomplish payload handling

functions.

Table 8-12. STS COMPARED TO STS WITH SEPS FOR TRANSPORTATION
COST EFFECTIVENESS - EARTH ORBITAL FLIGHTS
REQUIRING UPPER STAGES

BLSTS BLSEPS

COST ELEMENT (20 KHR-REFUELED)

(DOLLARS IN MILLIONS) 106$ NUMBER 106$ NUMBER

SHUTTLE FLIGHTS @ $11.09 1508. 136 1342. 121

IUS EXPENDED @ $5.17 103. 20 98. 19

IUS WITH KICK STAGE @ $6.37 13. 2 13. 2

TUG RECOVERED FLTS @ $.96 87. 91 74. 77

TUG RECOVERED EXPENDED KS
@ $2.16 15. 7 15. 7

TUG EXPENDED @ $14.16 0. 0 0. 0

TUG AND KS EXPENDED @ $15.36 92. 6 92. 6

TOTAL TRANSPORTATION COST 1818. 1634.

$ SAVED IN TRANSPORT COST -- 184.

VEHICLE INVENTORY COST SEPS
@ (VARIES WITH PRODUCTION) 110. 9* 146. 11**

SEPS DEVELOPMENT & OPERATIONS 122. 144.

TOTAL SYSTEM COST 2050. 1924.

NET $ SAVED -- 126.

*8 PLANETARY VEHICLES PLUS ONE SPARE

**8 PLANETARY VEHICLES PLUS ONE SPARE PLUS TWO EARTH ORBITAL VEHICLES

8-41
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Table 8-13. ALLOCATION OF PROGRAM COSTS

PLANETARY AEO TOTAL

DDT&E 100

PLANETARY STAGE 89

EO PAYLOAD SYSTEMS 11

PRODUCTION 146

9 PLANETARY UNITS 110

2 EO UNITS PLUS SPARES AND
GPME 36

OPERATIONS 
44

START UP 15

SOFTWARE A 3

PERSONNEL 18 8

232 58 290

Cost effectiveness is based upon comparison of the cost required to

accomplish the reference mission model (which contains a planetary SEPS pro-

gram) with the baseline Space Transportation System without an Earth Orbital

SEPS to the cost required if the program described in this document were

implemented.

8.9 DDT&E AND PRODUCTION PROGRAM COMPARISON OF A 25 kw SEPS TO A 50 kw SEPS

A cost of a DDT&E and Production Program for a 25 kw SEPS is compared to

one for a 50 kw SEPS in Table 8-14. This comparison covers the system from

DDT&E through first unit production costs.

It is estimated that the costs of production will follow the "cost

improvement curves" in subsection 8.6. The operations costs will not change

significantly.
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Table 8-14. COMPARISON OF 25kw TO 50kw BASIC COSTS
(SEPS DEVELOPMENT AND 1ST UNIT COSTS)

(Dollars in Millions)

DEVELOPMENT FIRST UNIT COST
COST ELEMENT 25 kw A FOR 50 kw 25 kw A FOR 50 kw

STRUCTURES & THERMAL CONTROL $ 4.8 $ 1.2 0.1

PROPULSION 9.1 2.0 0.8

POWER DISTRIBUTION 1.0 0.4

SOLAR ARRAY 7.8 5.8 6.1

DATA MANAGEMENT 3.4 1.0

COMMUNICATION 2.2 1.2

ATTITUDE CONTROL/N&G 9.2 2.0 0.2

INTEGRATION & TEST CHECKOUT 6.7 1.0 1.1 1.0

TEST HARDWARE 21.3 6.5

GSE 5.0

SOFTWARE 4.5

LOGISTICS 0.5

SE&I 6.8 1.4

PROGRAM MANAGEMENT 6.9 1.4

BASIC SEPS $89.2 A7.5 $17.5 A8.2

A FOR EARTH ORBITAL FUNCTIONS 8.3 1.0

97.5 18.5

A FOR TUG PAYLOAD SHELL AND
DIAPHRAGMS 2.5 0.8

$100.0 A% 7.5 $ 19.3 A% 42

Review of Table 8-14 shows that no DDT&E costs of the 50 kw system are

different from those of the 25 kw system except in the areas of integration

and test checkout and in the costs of test hardware. The rationale for the

assessment is simple. Except for the areas of the deployed solar wing, SEPS

at 25 kw and SEPS at 50 kw are so similar in size that they can use identical

facilities, similar handling transport, and so forth.
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The same number of engineers design, test, manage, and so forth, the

various aspects of each program. The biggest individual component of either

vehicle can be held by one man. The numbers of components required by a 25 kw

or a 50 kw SEPS are the same (except for solar cells); therefore, only material

costs would be expected to be different for DDT&E.

Production costs are greater primarily in the solar array subsystem

because individual cells are expensive, and twice as many are required for a

50 kw system as for a 25 kw system.

8-44
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Appendix A

SOLAR PANEL GIMBAL LOCK
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Appendix A

SOLAR PANEL GIMBAL LOCK

In the SEPS vehicle, the solar panels must be directed toward the sun,

while the engines must be directed along some direction determined by the

navigation control requirements. These two conditions, which must be satis-

fied simultaneously, determine the attitude of the vehicle. When the com-

manded thrust vector passes close to the solar vector, high angular acceler-

ations are called for, which can lead to excessive torque commanded to the

attitude control system. The geometry is shown on Figure A-i. The coordin-

ate system X Y Z is an inertially fixed system with the Z-axis directed

toward the sun (motion of the sun is ignored).

--0 ---
z

T (THRUST)

0

I Y

SolA

x

Figure A-i. SEPS GEOMETRY

On Figure A-1, n is a unit vector normal to the solar panels; and t is a

vector along the thrust axis. The angles are given by:

A-2
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ty
tan 4 = (A-l)tx

cos 0 =.t (A-2)

or

sin =  t + t 2  (A-3)

Now, consider the manner in which t changes during a slewing maneuver.

This geometry is shown on Figure A-2.

t

x

Figure A-2. THRUST VECTOR GEOMETRY

It is assumed that t moves along a great circle, in the plane of inclina-

tion n, shown on Figure A-2. Since the direction of the X-axis has not yet

been defined, there is no loss of generality in assuming it to be along the

line of nodes between the X-Y plane and the plane of t.
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The components of t are given by

tX = cos X

t = sin A cos n (A-4)

t = sin A sin n

Substituting these relations into Eqs. (A-1), (A-2), and (A-3), obtain

tan 4 = tan A cos n (A-5)

cos e = sin X sin n (A-6)

or sin 8 = sin A cos2n + cos2A . (A-7)

Note that the maximum value of 6 is given by

sin e = cos n.

Note also that when n = 90, Om = 0 and 4 becomes indeterminate. This

is the "gimbal lock" phenomenon.

Now, suppose t is moving in its plane at a constant rate , and n is

constant. Consider the derivatives of 6 and 4. From Eq. (A-6), obtain

-sin 8 0 = cos A sin n

S= _cos X sin l . (A-9)
sin 6

Eq. (A-5) gives

2 * 2
sec 4 4 = cos n sec 2 X

But sec 2  1 = 1 + tan 2  (A-10)
cos 4

Hence, one has

2 2
(1 + tan2 4) = cos n sec A

(1 + tan2 A cos 2 n)$ = cos n sec2 X

A-4
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cos n?
2 2 2

cos X (1 + tan X cos n)

cos n i
2 2 2

cos X + sin 2  cos2

cos nT

- 2 2 2
cos A + (1 - cos X) cos

cosl X
2 2 2

cos X(1- cos2 ) + cos n

cos n
$ 2 2 2

cos A sin n + cosn

Using Eq. (A-8), one may write

sin 8
Sm (A-11)

2 2 2
sin e + cos e cos X

n m

Consider the maximum value of this rate. It is maximum when the denominator.

is minimum, that is, when

a [sin 2 0 + cos 2  = cos 2  ] = 0
aA m m

Differentiating gives

- 2 cos2 6 sin X cos X = 0
m

sin X cos X = 0

nor X (A-12)
or ' 2

The roots for n even correspond to minimums in p. Those for n odd give the

desired maximums. Setting . = 900 in Eq. (A-11), obtain

sin 6m

;max sin 2 m
sin 6m

or (A-13)
max sin 8m
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These results indicate that the maximum rotation rate about the solar

vector is related to X by a multiplication factor csc e . When 8 = 0 (that
m m

is, the system passes through "gimbal lock"), imax is infinite. In Table A-i,

the value for this factor is given as a function of 0m

Table A-1. RATE MULTIPLICATION FACTOR

0m  CSC em

900 1.

600 1.155

450 1.414

300 2.000

200 2.924

100 5.759

50 11.47

10 57.30

A factor perhaps more important than the rate ; is the corresponding

acceleration *, since this is directly related to control torques. Returning

to Eq. (A-ll), it may be seen that Eq. (A-14) may be written

= k (A-14)f(X)

where k = sin Am

f(A) = sin 2 e + cos2 6 s2  . (A-15)
m m

Differentiating Eq. (A-14) gives

S= f' x (A-16)
f2

where f' = f() (A-17)
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The maximum acceleration occurs when

-() = - k - (f'/f 2 ) = 0

which gives

S2 - 0
2 3

f f

or 2
f f" - 2 (f')2 = 0 . (A-18)

The derivatives are:

f' = -2 sin X cos X cos 2 e
m

(A-19)

2 2 2
f" = -2(cos A - sin X)cos e

m

Eq. (A-18) becomes

2 2 2 2 2 2
-2(sin 0 + cos 2  cos A )(cos A - sin A ) cos 6

m m m m m m

- 2[-2 sin A cos cos2  ]2 = 0
m m m

2 2 2 2 2
(sin a + cos cos A )(cos A - sin )

+ 4 sin 2 A cos 2 A cos 2  = 0
m m m

(sin 2 0m + cos 2 0m cos 2 m)(cos2 m - sin2 m)

+4 sin 2 A cos 2 A cos = 0. (A-20)
m m m

This may be rewritten
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2 2 2 2
(sin e + cos. 0m cos AM) [2 cos A - 1]

2 2 2

+ 4(1 - cos Am ) cos Am cos m = 0(2 cos 2  - 4 cos2 0 m) c si A + (2 sin 2  - cos2

m m m m

This is a quadratic in cos 2 Xm, with

a 2 cos2 e
m

b =-(2 + cos 2 0M) (A-22)

c = sin2 8

Using these, one obtains
m 2 2 2

b2 - 4 a c = (2 + cos2 m) - 8 cos 8m sin m

= (4 + 4 cos 8m + cos 8m ) - 8 cos2 8m(l - cos2 m)

= 4 + 4 cos2 + + COS 4 O - 8 cos2 O + 8 cos4 (em m m m

4 2
m ms= 0 cos2 0 +4

2 4 2
b -4 ac = 9 cos 0 + 4 sin 0 (A-23)

m m
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Then one obtains

2 2 + cos 8 + 9 cos a + 4 sin2 8
cos =

m 4 cos 2
m

Factoring the term under the radical gives

sin28 1
4 2 4 c4  m

9 cos 4 + 4 sin2  = 9 cos 4  +
m m M 9 cos4 a

2 2 2 m= (3 cos 28) 1 + .- tan 8m sec )2]

then + cos2 + 3 cos 2 m i + tan 0 sec m 2

cos A
os m 4 cos2 6

m

or

= 2 sec2  m + + 3 1 + tan m sec 8m 2
cos m 4 cos 2  (A-24)

m

The negative sign must be used for the root, since the positive one leads to

cos 2 Xm 1 [4 + 2 sec 2 8m ] > 1 . (A-25)

Having obtained X from Eq. (A-24), one can determine f(A ) and f'( m)

from Eqs. (A-15) and (A-19). This then gives max using Eq. (A-16). Because

of the complexity of Eq. (A-24), it is not practical to seek an explicit

formula for max. A tabular result must suffice.

In Table A-2, the value of max is given as a function of 8m . Note that

for 0m < 400, m ( 2 is greater than unity, and becomes large very rapidly

as 6 decreases. For 8. = 50, the multiplication factor is 85. A graph of
m m

this function is given on Figure A-3.
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Figure A-3. ACCELERATION MULTIPLICATION FACTOR
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Table A-2. ACCELERATION MULTIPLICATION FACTOR

em  max/()2

900 0

600 0.2946

450 0.7872

300 2.1313

200 5.102

100 21.15'

50 85.2

10 1060.

The power input to the solar panels is proportional to the cosine of the

error angle. Values for this angle and the corresponding acceleration factor

are tabulated in Table A-3 for various power limits.

Table A-3. POWER LOSS AND ACCELERATION MULTIPLICATION

POWER AVAILABLE e
(Percent) (Degrees)

50 60 0.2946

60 53.13

70 45.57

80 36.87 1.38

85 31.79 1.88

90 25.84 2.93

95 18.19 6.25

97 14.07 11.1

99 8.11 29.5

Note that values of power available in the range of 80 to 90 percent

appear reasonable, yielding acceleration factors on the order of two.
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Appendix B

TERMINAL RENDEZVOUS ANALYSIS
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Appendix B

TERMINAL RENDEZVOUS ANALYSIS

Consider the relative coordinate system defined as on Figure B-1, and

centered at the location of the target satellite (in a circular orbit).

Y

ORBIT I _ _ _ X
VELOCITY x

TO EARTH

Figure B-I. RELATIVE COORDINATE SYSTEM

The linearized equations of motion for a vehicle in this coordinate

system are:

x = a + 2 ny
S• 2 (B-l)

y = a - 2 nx + 3 n y
y

where

n = mean motion of target satellite

and

ax, a = external accelerations applied to vehicle a = F/m

The particular problem of interest is that of terminating a continuous

orbit-raising process by rendezvous from below. This problem is mathemat-

ically equivalent to that of departing the target satellite for the earth,
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as can be seen by changing the signs of x, ax, and t in Eqs. (B-1). This

latter problem is more convenient to investigate since the vehicle can be

initialized to zero positions and rates.

In a continuous orbit-raising (lowering) process, the vehicle thrusts

horizontally in the negative (positive) x direction. The motion is obtained

by setting

a = a = constantx
a =. 0 (B-2)

in Eqs. (B-l). A particular solution is

x = -3a
(B-3)

y= 0

with first integral

x = -3at

2a (B-4)
2a

y= n

In the terminal maneuver, the satellite should begin at rest. After

a long time has elapsed, motion of the satellite should be asymptotic to

that in Eqs. (B-4). If the complete time history of y(t) were known, the

resulting motion could be determined. The method used in this study is to

specify, empirically, this function

y = f(t) • (B-5)

Almost any function such that

f(0) = 0

2a (B-6)

n

can be used, with certain restrictions to be discussed.

From Eqs (B-1), one obtains by differentiation and substitution

y'= a - 2 n a - n y * (B-7)
y x
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Since y and its derivatives are known functions, ax is related to ay through

the condition

2 2
a + a = a = constant. (B-8)
x y

Eq. (B-7) then represents a quadrature in a . Explicitly,
y

a =f(t)+n2 f(t) + 2n 2 2- a 2 (B-9)
Y Y

The initial value of a is given by setting x = y = y = 0 in Eqs. (B-l). One

obtains

a =y =  (0). (B-10)
y

The time history of a and thus the desired pitch program is given by

solving Eq. (B-9), with the initial value given by Eq. (B-10). If the choice

of f(t) is such that la y exceeds a at any time, the specified motion cannot be

realized and the function chosen is inappropriate.

As mentioned before, any function is satisfactory which satisfies the

boundary conditions in Eqs. (B-6) and the above condition on la y. The

functions investigated in this study were those of the form

2a -At
f(t) 2a (1 - e- )  

(B-11)

Since for this function,

2 aX
(0) n= (B-12)

the values of I are restricted to the range

0 < X < (B-13)
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